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You may recall this figure from Robert’s last column, in which he described the barcodes 
at the bottom as highly effective Exploratory/Topolgical Data Analysis descriptors of the 
three-dimensional structures at the top. 

Robert Adler continues his series of articles 

on Topology, Probability and Statistics:

In my previous column (in the March 2014 
issue) I introduced TOPOS as an acronym 
for Topology, Probability and Statistics, and 
promised three more columns to convince 
you that this combination is, today, produc-
ing elegant mathematics, powerful statistical 

tools, and challenges galore. This month I want to concentrate on the 
T of TOPOS. In particular, to address the question of why applied 
topologists do it with persistence, why that 
makes them different from theoretical topol-
ogists, and exactly what “it” is.

“It” is the study of shape, and this is 
what topologists do for a living and, for 
many of them, for a life. Their basic objects 
of study are simplicial complexes, manifolds 
and stratified manifolds. Manifolds are 
generalizations of two-dimensional 
surfaces like spheres and tori that we all 
know about. But, in the same way that we 
‘see’ two-dimensional surfaces as objects 
‘living’ (technically, ‘embedded in’) three-
dimensional Euclidean space, k-dimensional 
manifolds are objects which are typically 
embedded in spaces of dimension at least 
k+1. By the time one moves to stratified 
manifolds, almost any reasonable shape that 
you might think about falls into the ballpark 
of topology.

Topologists like to call three- and four-dimensional manifolds 
(embedded in at least four- and five-dimensional spaces) low dimen-
sional; even in these cases there are so many results that are contrary 
to the intuition that comes from living in a three-dimensional 
world—not to mention open problems—that it is clear that we need 
special tools for understanding high-dimensional structures and data 
sets. (The latter, of course, is what this column is doing in an IMS 
publication!) 

Since intuition does not work, mathematics has developed two 
closely intertwined areas of topology—differential and algebraic—to 
replace it. Today I want to concentrate on algebraic concepts, and to 
describe them with a simple example, visualizing a real valued func-
tion on a three-dimensional set. For something concrete, think of heat 
levels in a metal bar, activity levels within the brain, or pollution levels 

at various heights above a city (and, if you can’t wait for more about 
applications, jump ahead to the next page). To ‘really see’ what such a 
function looks like, we need four dimensions (three for the parameter 
space, and one for the function values) and that is one more than it is 
easy to find. One way out of this would be to threshold the function 
at various levels, and look at the ‘excursion’ or ‘super-level’ sets of the 
parameter space, the regions over which the function takes values 
higher than the threshold. You can see how this works in the top part 
of the figure below, in which the function is defined over a cube, and, 
moving in a up-down zigzag fashion from left to right, you see the 

excursion sets over 
lower and lower 
thresholds.

These sets tell 
you a lot about 
the function. For 
example, it is defi-
nitely multi-modal, 
since each of the 
little regions in 
the leftmost cubes 
corresponds to an 
excursion that must 
have at least one 
local maximum 
somewhere in the 
middle of it. 

Lowering the 
threshold and 

moving to the right, the structure of the excursion sets becomes 
more complicated, and, instead of their being composed of a number 
of isolated regions, there are fewer regions joined in complicated 
fashions. In fact, ‘holes’ start to form, of the kind you could poke 
your finger through if this were a real three-dimensional object rather 
than a flat representation of one. Moving to the extreme right, almost 
everything is in the excursion set, and so it now looks like the cube 
itself, although we can be reasonably certain that there are some small, 
internal ‘voids’ that must look much like the regions in the left-most 
cube.

You may not have realized it, but we have just been doing some 
rather fancy algebraic topology. By talking about isolated regions, 
holes and voids, we have been talking about the three building blocks 
that make up all (nice) three-dimensional objects, and we have been 
following how these change under a filtration. The problem is that, 
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This might help.

when we move to k-dimensional objects, there are k such building 
blocks, and nobody really knows what they look like. (In fact, since 
we can only see in three dimensions, ‘look like’ is probably not even a 
well-defined term here.) 

To get around this, topologists replace these building blocks 
with algebraic objects, typically groups, and start using terms like kth 
homology and homotopy to replace holes and voids. It seems almost 
unbelievable to the novice—including me, even after working with 
topologists for over half of the last decade—that studying groups and 
relationships between them could ever be a useful tool for under-
standing shape. However, not only does this work quite well, but it is 
the only real tool that Mathematics has for this study, even after more 
than a century of concentrated effort!

A column like this is hardly the place to define and explain 
homology theory, but, somewhat amazingly, it is easy to explain 
something that is intrinsically more complicated, and that is persistent 
homology. Look again at the cubes, recall the description above about 
how things change as we go from left to right, and how regions, holes 
and voids appear and disappear. Think of this as the ‘birth’ and ‘death’ 
of the different phenomena, where we morbidly refer to the merger of 
two as the death of one of them.

The diagram below the cubes encapsulates what I have just 
written. Each line in the top collection (moving from left to right) 
illustrates the birth, life, and death of a region, via its starting point, 
interior, and end point, respectively. The next set of lines do this for 
the holes, and the lowest set does the same for voids. These lines are 
typically called bars, and the entire collection a barcode.

Think now of doing this not in our current three-dimensional 
situation, but in a 1,000-dimensional one. Neither you nor I know 
what the fourth or 999th topological building blocks look like, but 
even without this there are algorithms that would allow us to repeat 
what we just did in three dimensions, and follow the life and death 
of each one of these structures in a barcode which would now have 
1,000, rather than three, regions. In the language of topology, we 
would be following the persistence of the generators (one per bar) of 
1,000 homology groups. You don’t have to understand homology to 
realize that there is useful information on shape in barcodes.

Life gets even better. Those of you who deal with 1,000 dimen-
sional data know that, typically, the data live on a submanifolds 
of much lower, and usually single-digit, dimension. That is what 
techniques of dimension reduction and manifold learning rely on. 
An interesting, but not surprising, result in algebraic topology is that 
even if an object has nominal dimension 1,000, if it is really only, for 
example, three-dimensional, then all the homologies of degree greater 

than 3 will be empty. In terms of barcodes, there will only be three 
sets of bars, and the remaining 997 regions will be empty.

So now you can see why applied topologists do it with persistence! 
Persistent homology, visualized, for example, via barcodes, tells you a 
lot not only about the dimension of the object you are looking at, but 
also about its inner structure.

Why don’t theoretical (I refuse to use the honorific ‘pure’ here) 
topologists do it with persistence? Because, at the turn of the millen-
nium, persistence was invented by topologists with a view to applying 
what they knew to solve real world problems, and … and I will leave 
you to finish this sentence.

The above example, of analyzing the structure of functions 
over high dimensional sets has many applications. For example, if 
the function happened to be a density estimator, then identifying 
excursion sets would be a way to go about cluster analysis. As opposed 
to non-topological methods of cluster 
analysis, this method would tell you not only 
the number of clusters, but also something 
about how they sit in relation to one another. 
Many other applications, including manifold 
learning, can be found in the references in 
my previous column. (On persistence itself, 
especially its computational aspects, see the 
books by Edelsbrunner and Harer or Afra 
Zomorodian.)

This month, however, I did not want to concentrate on 
applications. Rather, I wanted to induct my fellow statisticians and 
probabilists into the exclusive club of people who use words like 
‘homology’ as freely as we say t-test and Chebychev. Now, the next 
time a topologist throws strange-sounding words at you, you can 
respond with a sneer and say something deprecating like “Simple 
homology is so passé. Personally, I do it with persistence”.

Coming up
In the next two columns I want to concentrate on what is missing 
from the above: randomness. For example, if the function used above 
for my example is random (e.g. a random field if you are a probabilist, 
an empirically based density estimator if you are a statistician) then 
the resulting barcode is also a random object. How a statistician 
should cope with this in order to draw inferences, or to estimate 
structures, and how a probabilist might want to generate and analyze 
random barcodes, are difficult problems, and at the forefront of a lot 
of current research activity.


