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Robert Adler presents the third in his 
series of four articles on TOPOS, Topology, 
Probability and Statistics:
This month, I want to direct most of my 
words to my fellow probabilists, and, ulti-
mately, to issue them a challenge. Accepting 
the challenge will, I am certain, benefit all of 
the three components of TOPOS.

Ross Pinsky, a close friend of mine and probabilist with a strong 
analytic side, once reacted to my late-in-life love affair with topology 
by claiming that he could think of no two topics that were further 
apart than Probability and (especially algebraic) Topology. 

On the face of it, it would seem that Ross was right. After all, 
Topology deals with large scale, global concepts, like ‘round’, ‘holey’, 
and ‘wholly’ (fortunately avoiding ‘holy’) while Probability is best at 
handling local questions, like, ‘Is a stochastic process continuous, or 
differentiable?’ Even if you think about the theorems of Probability 
and Statistics that say global things about large systems, almost all 
work from the infinitesimal up. Our most basic results, the laws of 
large numbers and the central limit theorem, work by saying that 
in a sum of many things, no single term can dominate, and it is this 
insignificance of the individual that eventually leads to the global 
phenomena at the core of Probability and Statistics.

Why should this matter? Well, in the first TOPOS column I 
argued that people who care about analyzing high dimensional data 
should care about Topology. Data invariably involves randomness, 
and so, despite what some of my Computer Science friends might 
claim, its analysis requires statistical thinking. In turn, the theory 
(and practice!) of Statistics is based on Probability. So, if you buy into 
this theme, we are going to have to marry Topology and Probability, 
despite Ross’s heartfelt angst. 

In the second column I tried to introduce 
the uninitiated to Homology—the heart 
of Topology—via the notion of persistence 
homology and its pictorial representation 
via barcodes. I also noted that Homology 
is all about k-dimensional “holes” in n-di-
mensional sets. The number of such holes 
is called the k-th Betti number, after the 
19th century Italian mathematician, Enrico 
Betti, and is denoted by βk. For the rest of 
this column that is all you need to know 
about Homology; i.e. That there is a simple 
numerical variable called a Betti number, and 
a richer, more informative, and statistically 

important construct known as a barcode.
Returning to the setting of the first column, there I was, in 2010, 

a statistical-probabilistic fish out of water, gasping in the dry air of 
my first Applied Topology conference, when I was accosted by a 
tumultuous troop of titillated topologists delighted by the belief that 
“now that we have captured a probabilist, he can tell us about the 
distributions of Betti numbers for random simplicial complexes”.

What complex? What is random? What do you expect to be able 
to discover? Why would you care?

The “why would you care” was the question of the first column of 
this series, so let’s assume that issue is settled. As for “what complex”, 
here is their example:

Take a set of points. (The points of a Poisson process, homo-
geneous or not, or iid observations from a distribution, perhaps a 
mixture distribution.) Join points that are close, thus obtaining a (very 
simple) random simplicial complex.

For a first question, they wanted to know what could be said 
about β0 of this object. “Ahh,” I said wisely, stroking my white beard 
(it has to be there for something useful beyond saving time shaving) 
“That’s easy. I know all about that.” Why so easy? Well, β0 just counts 
connected components, and this “random simplicial complex” 
of theirs was familiar. We cover it when we talk about things like 
connectivity in random graphs or networks, or percolation, or even 
graphical models, The truth is that I don’t know too much about 
these things, but my bookshelf is full of books by probabilists and 
statisticians covering these topics. Since I was representing the rest 
of you, saying “I” instead of “we” or “they” seemed like something I 
could get away with. 

It turned out that mentioning graphs was a mistake, since 
their retort was the saying (attributed, apparently incorrectly, to 
Whitehead) that “graphs are the slums of Topology”. So, smirking, 

they upped the ante, placing a smiley on 
each of the random points, as in the picture 
on the next page. “Now tell us about the 
distribution of the homology of the union 
of smileys. Of course, the smileys are high 
dimensional, and so is the homology”.

It turns out that this particular model 
also has a familiar history. Stochastic geom-
eters call it (a special case of ) the “Boolean 
model”, and concentrate on finding formulae 
for expectations of geometric quantities 
like volume, surface area, etc. Others call it 
“continuum percolation” and ask for what 
critical smiley radius will such a structure, 
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when the number 
of smileys becomes 
large, become 
connected. Like 
most percolation 
problems, this one is 
easy to ask, but very 
hard to answer. 

However, none 
of this helped me 
with the topologists. 
They did not care 
about geometric 
measurements. For 
a topologist, there 
is no such thing as 
“large” or “small”, 
only “hole-iness”. 

Simple connectivity, of course, is beneath their contempt. 
So, what can we say about the expectations of the Betti numbers 

of the union of n-dimensional smileys (leaving even the definition of 
“distribution of homology”, let alone results, to a later generation)? 

Ross would claim that this problem is hard, and he is right. That, 
however, is not to say that it is impossible, and a brave cohort of 
young researchers is attacking these problems and proving some fasci-
nating results. Taking the lead is Matthew Kahle, who stands out from 
the crowd in a number of ways, not the least of which is that he is 
the only mathematician I know who is so dedicated to his profession 
that he has a tattoo of a fractal on his biceps. Kahle and others have 
analysed the large scale behavior of mean Betti numbers for this and a 
number of other recipes for generating random simplical complexes. 
There are now results about expectations, laws of large numbers, and 
even central limit theorems. (See the recent review by Kahle and 
Omer Bobrowski at arxiv.1409.4734.) 

This is not the place to give details about theorems, other than 
one. Actually, it is not yet a theorem, but more a collection of obser-
vations based on simulation, experience, and real theorems, all point-
ing in the direction of a universality phenomenon that surprised even 
seasoned topologists. The phenomenon is the following: In all models 
of random structure studied so far in which Betti numbers become 
large, there is always one that is an order of magnitude larger than the 
others. In other words, if we return to our version of homology that 
says it is all about gluing together spheres of different dimension, then 
there is one dimension that dominates all the others. Either we have, 
in three dimensions, lots of connected components and very few rings 

and holes, or lots of rings, all in a few connected components with 
few voids, and so on. It seems that when Nature plays dice to build 
large random structures, she has a great deal of trouble building com-
plicated ones, but concentrates on building sets with rather uniform 
homologies.

All of these results are about large 
systems, which is when Probability can apply 
its tools to ignore local structure. Saying 
something about small systems turns out to 
be harder, unless we take the lead from Euler. 

Among the multitude of mathematical 
constructs that bear his name, lies the “Euler characteristic” of sets. 
For a 3D set, this is the number of components minus the numbers of 
rings plus the number of holes, and in general it is an alternating sum 
of Betti numbers. 

The Euler characteristic (EC) is ubiquitous—it appears just about 
everywhere the words “topology” or “geometry” do, and it has a 
multitude of seemingly different definitions. The result is that much 
about the EC for random systems—both those of the smiley kind and 
those arising from continuous systems—is known. Indeed, a good 
part of my own career in random fields has involved the EC, and 
Jonathan Taylor has achieved mathematical miracles in working this 
up to a beautiful theory. My sorely missed friend Keith Worsley spent 
much of his career in Biostatistics developing what he and the British 
neuroscientist Karl Friston dubbed Toplogical Inference, applying 
results about the EC to analyze fMRI brain images. 

So it turns out that if one wants ready-made results linking 
Probability and Topology, then one way to go is with the EC. Euler 
was right. He found something topologically deep, but simple enough 
for probabilists.

But the big challenge to Probability is still out there. Although 
results about Betti numbers are coming in, they are still mainly about 
means and limit theorems, More importantly, almost nothing is 
known about the distributional properties of barcodes, and these are 
the main tool of Applied Topology. Probabilistic results about bar-
codes are going to be crucial to developing a serious statistical theory 
behind their application.

In summary, we urgently need to develop new tools to attack one 
of the most challenging, interesting, and ultimately applicable prob-
lems around: describing the distributional properties of the algebraic 
topological structure of random systems. We need, simultaneously, to 
prove that Ross was wrong, and to move Probability out of the slums 
of thinking only in the trivial topology of graphs, moving it into a far 
richer and more promising domain of real topology.
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