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\ Lecture 24 |

‘ Generating functions I
More on normal distributionsl
Central limit theorem I

Continuity theorem I
Comments on the CLT I

~

/




/ ‘ Generating functions I \

Probability gf gx(s) = FE {SX} = 3 5% px(x)
tx
Moment gf Mx(t) = E{etX} _ 2.0 ¢ px ()
fx e'” fx(x) dx
10x
Characteristic fn  ox(0) = E{e*} = Zme px ()
fx eif fx(z) dzx
where 1 = v/ —1.

Also, when My exists,

QOX((Q) = Mx(fl,e)
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‘ Properties of GF's I

® Derivatives of MGF’s (CF’s) functions evaluated at t = 0

(0 = 0) give moments. e.g

d
— M x (t
M (1)

- pixy o

t=0 dt? B E{X2}

t=0
® X,,..., X, independent, with MGF’s (or CF’s)
MXl(t)77MXn(t) (¢X17"’790Xn)
Mx 4+t x, (1) = Mx,(¢)--- Mx, (1)
= px,(0)-px,(0)

PX1+-+X, (9)

® MGEF’s do not always exist, characteristic functions do.

® Both MGF’s (when they exist) and CF’s determine distri-

butions.
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‘ More on normal distributionsl

1 1 2 2
X ~N(u,o%) = x) = e~ 2(@—p)"/o
(0% /() Nor
Therefore,
1 > 1 2, 2
M (t E{et*Y = / A1 Gt DV
x (¢) {e”} NI
Note
(7 — M)2 2,2 (z — (1 — 0275))2
te — — ut ottt —
x 552 pt + 20 52
So that
]_ o© 2 2 2 1 2,2
Mx(t) = epttsr _/ o (o= (u=0?0)? /207 g1 _ i+ io’
x(t) V2T o J_o




‘ Standardising normal distributions I \

® X ~ N(u,0%) <= Z=X*"==L~N(0,1)

PROOF: (=)

12,2

X ~ N(p,0%) <= Mx(t) = etttz

My« (t) = E{et(X—u)/G}

Mx(t) = erttzot’




/ ‘ Sums of normal random variables I

® X ~ N(ux,0%), independent of Y ~ N(uy, 0% ),
= (X +Y) ~ N (ux + py, 0% +0y)

Thus

— G(HX +uy )t+i (o5 +oy)t”

® X, ~ N(ug,0:), k=1,...,n, independent,

K = (X1 +-- +X,n)NN(,u1+...+,un, 02440
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‘ Central limit theorem I

® X, Xo,..., X, independent random variables with same

distribution. E{X}} = u, Var(Xy) = o2

P{a, < ST:/%:“ gb} ~ ®(b) — B(a)

where

1 v 2
O(z) = T / e /2 dg
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‘ “Continuity Theorem” I

® /.75, ... random variables with
moment generating functions Mz, , Mz,,...

or characteristic functions ¢z, , z,,. ..

® / a random variable with MGF Myz(t) or CF ¢(0).

(1) Mzn(t)%Mz(t) < P{anz}—>P{Z§z}
(2) QOZH(Q)HQOZ(Q), v 60 < P{Zn gz}—>P{Z§z}

for all points z at which the function P{Z < z} is continuous.

® (?7) must hold for all ¢ for which My is defined.

® (??) must hold for all 6.

-

~




-

_ Sn—np Y (Xe—p)/o

2: Taylor expansion for small ¢.

Mx- (1)

t t
1+ 0+ & + My,

2t
1+ — + =M

‘ A proof of the CLT I \

1: Reduction to p = 0 and 0° = 1.

> X
/n

Mx+(0) + tMx.(0) + =M%.(0) + —=My.(a)

Kfor some 0 < a < t, since E{X*} =0, Var(X*) = E{(X*)?} = 1./




/3: Bounding MY. (a).

MY. (a) = E{X3e**} = C will be finite if My« exists.
(Using characteristic functions, this can be shown to follow
from E{| X[’} < c0.)

4: The proof.

E {etzzzl XZ/\/H}

i) o)

(. 32 33\
- n n3/2

142
— €2 as n — oo

kand so the result follows from the continuity theorem.

E
b

= (1 G oty
(
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For a direct proof of the CLT
in the Bernoulli case,
see Pitman, §2.3
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‘ What can/cannot be relaxed I

® We really should have used ¢ox and not Mx, so that we

would not have had to assume that all moments exist.

® Var(X) < oo is enough. Do not need that either
E{|X?|} < oo or that Mx exists.

® Var(X) < oo is crucial to the Taylor expansion argument.
® Indepedence can be replaced with “weak dependence”.

® Identical distributions can be replaced with “none of the
X, significantly larger than the others”, and all variances
finite.

® Var(X) = oo is doable, but the answer is qualitatively

different: i.e. The limit is no longer normal.
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