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Lecture 9

Poisson distribution

Wombats

Poisson process

Exponential distribution
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Poisson approximation to binomial

X ∼ Bin(n, p) with n large, p small, and np reasonable, ⇒

P{X = k} ≈
e−µµk

k!
,

where µ = np.

Poisson distribution

Take pk ≡ e−µµk

k! , k ≥ 0, where µ > 0. Then

∞∑

k=0

pk = e−µ

∞∑

k=0

µk

k!
= e−µ eµ = 1

⇒ the pk define a set of probabilities!
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Mode of Poiss(µ)

distribution

• We are looking for the value with the largest probability;

i.e. the k∗ for which

P{k∗ − 1} ≤ P{k∗} and ≤ P{k∗} ≥ P{k∗ + 1}.

P{k − 1} ≤ P{k} ⇐⇒
e−µµk−1

(k − 1)!
≤

e−µµk

k!

⇐⇒ 1 ≤
µ

k
⇐⇒ k ≤ µ

⇒ the mode k∗ satisfies µ ≤ k∗ ≤ µ + 1, or, if k is not an integer,

k∗ = [µ + 1], the “largest integer less than or equal to µ + 1”.
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Poisson Process

time0 5

killing cars
wombat 
Number of

up to time t

N(t)

The process and its axioms

• N(t) is the number of arrivals up to time t, (N(0) ≡ 0).

• s < t ≤ u < v ⇒ N(v) − N(u) and N(t) − N(s) are

independent.

• It is “unlikely” that there will be ≥ 2 arrivals in a short

period.

• There is an arrival rate λ > 0.
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Formal axioms re arrivals

• Assume, for δ small,

P{N(t + δ) = k + 1 | N(t) = k} = λδ + o(δ),(1)

where

g(x) = o(x) ⇒ lim
x→0

g(x)

x
= 0.

P{N(t + δ) > k + 1 | N(t) = k} = o(δ),(2)

which imply

P{N(t + δ) = k | N(t) = k} = 1 − λδ − o(δ),(3)

All of which imply

P{N(t) = k} = e−λt(λt)k/k!

i.e. N(t) has a Poisson distribution with µ = λt.
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Proof: Set pt(k) = P{N(t) = k}.

pt+δ(k) = pt(k) × P{No arrivals in [t, t + δ]}

+ pt(k − 1) × P{1 arrival in [t, t + δ]}

+ P{All other possibilities}

= pt(k) (1 − λ δ − o(δ)) + pt(k − 1) (λ δ + o(δ)) + o(δ)

Rearranging gives

pt+δ(k) − pt(k)

δ
= λ pt(k) + λ pt(k − 1) +

o(δ)

δ
.

Sending δ → 0 gives

d

dt
pt(k) = λ pt(k) + λ pt(k − 1),

which is solved by

pt(k) = e−λt(λt)k/k!
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WOMBATS
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P{N(t) = k} = e−µµk/k!

Example 1: Wombats A very old, solid, wombat stands at the

side of the Trans Australian highway, at a point at which cars pass

at the rate of two per hour.

• If the wombat waits for an hour, what is the probability

that he will see exactly 4 cars?

◦ µ = λt = 2 × 1 = 2.

◦ P{N(1) = 4} = e−224/4! = 0.0902

• It takes the wombat 45 minutes to cross the road, and three

car collisions to kill him. What is the probability that he

will make it across alive?

◦ µ = λt = 2 × 0.75 = 1.5.

◦ P{Survival} = P{N(0.75) ≤ 2} = e−1.5[1 + 1.5
1 + (1.5)2

2 ] = 0.81
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P{N(t) = k} = e−µµk/k!

• Suppose T is the amount of time the wombat waits to see

a car. How large is T likely to be?

P{T ≥ t} = P{N(t) = 0} = e−λt = e−2t.

• Suppose the wombat has already waited t hours to see a

car, without success. What is the probability that he will

have to wait another s hours?

P{T > t + s | T > t} =
P{T > t + s and T > t}

P{T > t}

= P{T > t + s} / P{T > t}

= e−λ(t+s) / e−λt

= e−λs

= P{T > s}
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Binomial distribution

n tosses of independent
coins with probability p
of success

Poisson distribution

Number of arrivals at rate
λ with independence
between time periods

Probabilities:

P{k} = e______
k!

Probabilities:

P{k}=(
n
k)p k qn-k

~ Poiss(np), n large, p small

Geometric distribution

Number of tosses until a
success exhibits lack of
memory

Exponential distribution

Time until arrival exhibits
lack of memory

Mode = [np+p] ~ np Mode = 

time
0

[ λ t+1]~λ t

- λ t (λ t) k

tt/n 4t/n
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Usage

Problem Poisson? Parameter (λ) Parameter (µ)

No. of cars on Herzl No

crossing Balfour

Telephone calls to Yes Rate/hour λ

exchange in an hour λ

Telephone calls to Yes Rate/hour λ/2

exchange in 30 mins λ

Telephone calls to Yes Rate/hour 2λ

exchange in 2 hours λ

Telephone calls to Yes Rates/hour λ1 + λ2

2 exchanges in 1 hour λ1, λ2

12



'

&

$

%

Strontium 90 (p282)

• Radioactive decay is a Poisson process: λ=?

• “Half life” of material = 28 years

• ⇒ “Half life” of nuclei = 28 years

1/2 = P{Time to decay of specific nucleus > 28} = e−28λ

⇒ λ =
log(1/2)

−28
= 0.0248 per year.

Example: What is the probability that of 5 specific nuclei, at

least 3 decay within 2 years?

◦ µ = 5 × 2 × 0.0248 = 0.248

P{≥ 3 decay} = 1 − P{< 3 decay}

= 1 − e−0.248[1 + 0.248 + 0.2482/2] = .0002
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