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Lecture 36

Multivariate CLT

Multivariate normal

Covariance and correlation

Bivariate normal

A special construction
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Multivariate CLT

• Take independent copies X̂1, X̂2, . . . of a random vector

X̂ = (X(1), . . . , X(d))

• Vector of means: µ̂ = (E[X(1)], . . . , E[X(d)])

• Matrix of variances and covariances, Σ = (σij)i,j=1,...,d,

where σij = Cov(X(i), X(j))

• We have d different CLT’s here, each one stating

1√
n

n∑

i=1

[Xi(k) − µ(k)] → N(0, σkk), k = 1, . . . , d

• What can we say about

lim
n→∞

1√
n

n∑

i=1

[X̂i − µ̂]
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Multivariate Normal

• Write Ŷ ∼ N(µ̂, Σ) if

f
Ŷ

(ŷ) =
1

|Σ|1/2(2π)d/2
exp

(
−(ŷ − µ̂)Σ−1(ŷ′ − µ̂′)/2

)

• From the last lecture (with µ̂ = 0) we know that if

X1, . . . , Xn ∼ N(0, 1), independent, and

Ŷ = X̂A + µ ⇒ Y ∼ N(µ, Σ)

. where Σ = A′A

• Σ is called the covariance matrix of the random

variable Ŷ , since σij = Cov(Yi, Yj)
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Multivariate Central Limit Theorem

• If X̂1, X̂2, . . . are independent copies of a random vector

X̂ = (X(1), . . . , X(d)) with means µ̂ and variances-

covariance matrix Σ, then

1√
n

n∑

i=1

[X̂i − µ̂] ≈ N(0, Σ)

. for large n.

• Note: The precise form of dependence is lost in the limit.

Only covariances remain!
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Covariance and correlation

• Cov(X, Y ) = E{(X − µX) (Y − µY )}

• Cov(X, Y ) = E{XY } − µXµY

• V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X, Y )

• X, Y independent ⇒ Cov(X, Y ) = 0

• Corr(X, Y ) = Cov(X, Y )/σXσY

• −1 ≤ Corr(X, Y ) ≤ +1

• Cov
(∑

j ajXj ,
∑

k bkYk

)
=

∑
j

∑
k ajbk Cov(Xj , Yk)

• X, Y, Z independent ⇒ Cov((X + Z), (Y + Z)) = σ2

Z
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Bivariate normal

• X, Y ∼ N(0, 1), independent.

• U = aX + bY, V = cX + dY .

⇒ a11 = a, a12 = b, a21 = c, a22 = d

• V ar(U) = a2 + b2, V ar(V ) = c2 +d2, Cov(U, V ) = ac+ bd

fUV (u, v) =
1

2π|A| exp
(
−(u, v) (A′A)

−1
(u, v)/2

)

=
1

2π|Σ|1/2
exp

(
−(u, v)Σ−1(u, v)′/2

)

A =



 a c

b d



 , Σ = A′A =



 a2 + b2 ac + bd

ac + bd c2 + d2
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Rewriting the bivariate normal

• Write

Σ =



 σ2

X ρσXσY

ρσXσY σ2

Y





where ρ = Corr(X, Y ). Then

Σ−1 =
1

σ2

Xσ2

Y (1 − ρ2)



 σ2

Y −ρσXσY

−ρσXσY σ2

X





and so

fXY (x, y) =
1

2πσXσY

√
1 − ρ2

× exp

( −1

2(1 − ρ2)

[
(x − µX)2

σ2

X

− 2ρ(x − µX)(y − µY )

σXσY
+

(y − µY )2

σ2

Y

])
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Understanding the bivariate normal

• Take X, Y , with µX = µY = 0, σ2

X = σ2

Y = 1, ρ ∈ (−1, 1).

fXY (x, y) =
1

2π
√

1 − ρ2
exp

( −1

2(1 − ρ2)

[
x2 − 2ρxy + y2

])

• A sample scatterplot

• We want to find marginal and conditional distributions, all

of which can be done by integration.
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Special construction

• Take X, Z ∼ N(0, 1), independent

• Set Y = ρ X +
√

1 − ρ2 Z

• Note: E(X) = E(Y ) = 0,

V ar(X) = V ar(Y ) = 1, Corr(X, Y ) = ρ



 X

Y



 =



 1 0

ρ
√

1 − ρ2



 ·



 X

Z



 , Σ =



 1 ρ

ρ 1





• ⇒ (X, Y ) has the “standard bivariate normal” distribution

• ⇒ all properties about this distribution will follow by

studying the pair (X, Y ) defined above
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Properties of standard bivariate normal

• X, Z ∼ N(0, 1), independent, and Y = ρ X +
√

1 − ρ2 Z

• Marginals: X and Y are marginally N(0, 1)

• Conditional of Y |X :

◦ Given X = x, we have Y ∼ N(ρ x, 1 − ρ2)

◦ ⇒ E(Y |X) = ρ X, V ar(Y |X) = 1 − ρ2.

• Conditional of X |Y : By symmetry of the joint density

◦ Given Y = y, we have X ∼ N(ρ y, 1 − ρ2)

◦ ⇒ E(X |Y ) = ρ Y, V ar(X |Y ) = 1 − ρ2.

• Independence ⇐⇒ Corr(X, Y ) = ρ = 0
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General bivariate normal

• X and Y have a general normal distribution with parame-

ters µX , µY , σ2

X , σ2

Y and ρ ⇐⇒ the normalised random

variables

U =
X − µX

σX
V =

Y − µY

σY

have a standard bivariate normal distribution with correla-

tion ρ where

ρ = Corr(U, V ) = Corr(X, Y )

• Note:

X = σXU + µX , Y = σY V + µY

• Proofs by standard transformation calculations.
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Conditional distributions

• X and Y have a general normal distribution with parame-

ters µX , µY , σ2

X , σ2

Y and ρ, what is the conditional distri-

bution of X |Y ?

• Can be done usual way, by dividing joint density of X and

Y by marginal of Y . But this is a mess.

• Better to use special construction for standard bivariate

and then linear transformation.

• Result is:

X
∣∣Y ∼ N

(
µX +

ρσX

σY
(Y − µY ) , σ2

X

(
1 − ρ2

))
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Normal graphics
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