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\ Lecture 25 |

Exponential distribution I
Lack of memory I

Properties I

Relation to geometric I

Gamma distribution I

Wombats and the gamma I
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/ ‘ Exponential distribution I

e M if >0
f(t) =

0 otherwise

® This is a density:
/_ f(t) dt = /O e Mdt = [—e M T = 1.

® This is a familiar density:

P{T >t} = / e M dt = [—e_M]OO = e M
0

t

which is the probability of no arrival of a Possion process iup to

time t.

K ® P{T >t} is also know as a survival function.
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‘ Lack of memory I

® Suppose 1" > t. What is the conditional probability that

T>t+s?

P{T >t+s|T >t}

P{T >t+sand T >t}
P{T >t}

P{T >t+ s}/ P{T >t}

G—A(t—l—s) / 6—)\t

e—)\s

P{T > s}
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‘ Other properties I

® Mean

E{T} = /0 the M dt

I

—_
~—

>~

® Variance
E{T?*} = 2/)* = Var(X) = 1/)\°
® Standard deviation
SD(T) = /Var(X) = 1/A
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/ ® Moment generating function

M(t) = E{e'} = /0 et e ds

— /OO Ae~ (A=t)s g
0

A O
- \ — ¢ —()\—t)sd
i ( ) e S

A
- oo <t <A
T (—o0 <t < \)

& A
=0 dt2 \ )\ —t

® Characteristic function

® Variance

E{T*} = M"(t)

p(0) = BE{e™} = M(i0) =

\ A — 10




/ ‘ Strontium 90 I \

® Radioactive decay is a Poisson process: A=7
® “Half life” of material = 28 years

® — “Half life” of nuclei = 28 years

1/2 = P{Time to decay of specific nucleus > 28} = =23

log(1/2)
—28
Example: | What is the probability that of 5 specific nuclei, at

= A\ =

= 0.0248 per year.

least 3 decay within 2 years?

o u = 5x2x0.0248 = 0.248

P{> 3 decay} = 1 — P{< 3 decay}
= 1—e U281 4+0.248 +0.248%/2] = .00024///
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‘ Equivalent descriptions of a Poisson process I

® [: Counts of arrivals. The number of arrivals N(I) in a
time interval I of length t is Poiss(At), an the numbers of

arrivals in disjoint intervals are independent.

N(I)=2
___Fixedinterval I
T e S S
W, W, W, W, W;
® II: Times between arrivals. If W7, W5, ... are waiting times

between arrivals, then they are independent and all have a

exp(A) distribution.
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‘ Example: Telephone calls I

® Telephone calls come into an exchange at an average rate

of 3 per minute, as a Poisson process, N. Set N(s,t) =
N(t) — N(s).
® Prob’y of no calls in first two minutes.
P{N(0,2) =0} = e 2% = 7% = 0.0025
® First call takes at least two minutes to arrive.
P{W; >2} = e %% = 7% = 0.0025.

® Prob’y no calls between ¢t = 0 and ¢ = 2 and at most four

calls between t = 2 and ¢t = 3.

P{N(0,2) = 0} - PAN(2,3) < 4}
32 3 4
_ -6 __-3 O 42 4
= e -e (1—|—3—|—2!—|—3!—|—4!>
= 0.0020

~

/




-

Telephone calls (con't)

® Prob’y fifth call takes more than two minutes to arrive

P{W1+W2+W3—|—W4—|—W522}

= P{N(0,2) < 4}
62 63 64

_ ,—6 A T B
= e <1+6+2! +3! +4!)

0.2851

® GENERALISATION: Prob’y n-th call takes more than ¢

minutes to arrive

P{Wi+ ... + W, >t} = P{N(0,t) <n— 1}

= ¢ M (1 + (At) + ()‘;!) + ..+ Eitznl—)!)

N




/ ‘ Sums of exponentials I \

® Define I’ = W7 + ...+ W,,, where the W}, are independent
exponentials with parameter \.

Then
d at (At)? (At)" 1
fr(t) = g [1—6 A <1+()\t)+ o Tt (n_l)!)]
_ e (AT
= Ac (n—1)!
® Alternatively,
P{T edt} = P{N(0,t)=n—1, N(t,t+dt) =1}
e—At()\t)n—l
~ (=1 X A\dt
= fr(t) = le M ()"

\ (n—1)! /
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/ ‘ Gamma Distribution I \

T ~T(n,A\) < fr(t)=xe™ M ()" t>0
’ A (n—1)!" -
® Moment generating function
_ tTy P O
M(t) = E{e'} = /0 ele (n—l)!ds
_ A" /OO()\_t) e—(A—t)s(()‘_t)S)n_l s
(A=1)" Jo (n—1)!
)\’I’L
— ST (0<t< )

® Mexp()\) — )‘/()‘ o t)

= T~T(nA\) < T=Wy+---+W,

\Where Wy, ..., W, are independent, exp(\) variables. /

11



Properties of T' ~ I'(n, \)
® Mean: FE{T}=FE{Wi+---+W,}=n/\
® Variance: Var(T)=Var(Wi+ - -+ W,) =n/\°
® Standard deviation: SD(T) = +/n/\.
® Right tail probability:

P{T >t} = P{Wi+. ---+W, >t}
= P{N(0,t) <n-—1}

= ¢ M (1 + (At) + (AQ? 4+ ...+ Eitzn;))

(= G )
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‘ Gamma distribution for non-integral n I \

e (M)
[(n) -

T ~T(n,)\) <= fr(t)=Xe

where

I'(n) z/ e " dt / Ae” MO dt
0 0

® Now n is any non-negative number.

® Moment generating functions remains unchanged.

® — mean, variance, etc. are unchanged.

KBUT... /
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T ~T(n,\) <= fr(t)=Xe

BUT...

® Representation as a sum of exponentials does not make

sense if n is not an integer.

® = right tail probability formula is suspect (and wrong).

® The Gamma function, I'(n) cannot, in general, be evalu-
ated. All we know is I'(3) = /7 and

(n —1)! if n is an integer.

['(n) =
(n—1)I'(n—1) always (for n > 0).

\(PROOF: Integration by parts and induction on n.)

/

14



Gamma densities for integer n ()

FIGURE 2. Gamma density of the rth arrival for r = 1 1o 10. Mote how the d
the right and flatien outl as » increases

in keeping with the for

ima (r, A) disi

end S, Due 1o the central limit thearem, the

ion becomes as ymphoticolh

RONMICHE Qs 7 — o0,

1.0

Probability density in multiples of A

Do eee—— - . -
0 5 10 15 20) 25

time in multiples of 1/A4
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Gamma densities for general n (7)

FISURE 3. Gamma (r, A) densities for A = 1 and r & multiple of 1/4, 0<r<1,
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FIGURE 4. Gamma (r, A) densities far A =1 and r a multiple of 1/4, 1 =+ =2
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FIGURE 5. Gamma (r, A) densities for A = 1 and r o multiple of 1/4, 2 < r < 3.
0.4

Probability density
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