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CORRECTION

The following 7 pages replace pages 42-47 on my lecture notes An Introduction to Con-
tinuity, Extrema, and Related Topics for General Gaussian Processes, (1990), IMS Lecture
Notes-Monograph Series, 12.

They “enlarge” on the comment on the third line from the bottom of page 46, which
is concerned with the proof of Borell’s inequality, where I said “To complete the proof note
simply that...”. The word “simply” is simply out of place, and, in fact, Lemma 2.2 is false
as stated in the Notes. All the details are in the corrected version following?.

This is also a good place to point out that Borell’s inequality is due not only to Borell,
but, as Michel Talagrand pointed out to me, was also established independently in

Cirelson, B. S., Ibragimov, I. A. and Sudakov, V. N. Norms of Gaussian sample func-
tions. Proceedings of the Third Japan-USSR Symposium on Probability Theory (Tashkent,
1975), Lecture Notes in Math., 550, Springer, Berlin, (1976), 20—41.

In fact, their proof is more or less the one I used, building on the ideas of Pisier, who
also was unaware of this paper.

ADVERTISEMENT

A fully corrected version of the entire Lecture Notes, along with a totally rewritten
edition of my 1981 Geometry of Random Fields, is currently under preparation, and should
appear in 2001 as Random Fields and their Geometry, as a Birkhatser publication.

!The first person to notice this problem was a Stanford student of David Siegmund, and
the corrected version is basically due to Amir Dembo.
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II. TWO BASIC RESULTS

Despite the title of this Chapter, there are probably three basic results in the theory
of Gaussian processes, that make this theory both manageable and special. The first is the
existence theorem that to any positive semi-definite function R there corresponds a centered
Gaussian process with covariance function R; an important, but not particularly exciting
result.

The second is that the supremum of a Gaussian process behaves much like a single
Gaussian variable with variance equal to the largest variance achieved by the entire process.
In the way that we shall present it, this is Borell’s inequality, and is the key to all results
about Gaussian continuity, boundedness, and suprema.

The third is that if two centered processes have identical variances (i.e. EX}? = EY?
for all t € T'), but one process is more “correlated” than the other (i.e. if EX, X, > EY;Y,
for all s,t € T') then the more correlated process has the stochastically smaller maximum,
in the sense that P{sup X; > A} < P{supY; > A} for all A > 0. This is Slepian’s inequality,
and without this result many of the most basic results in the theory of Gaussian processes
would have no proof.

Both Borell’s and Slepian’s inequality are very special in that analagous results for non-
Gaussian processes are extremely rare. (We shall see some exceptions to this rule later). The
fact that even for Gaussian processes the sup X; in Slepian’s inequality cannot be replaced
by as simple a variant as sup |X;| is also indicative how very lucky we are that a result of

this kind holds at all.

1. Borell’s Inequality.

Let X be a centered Gaussian random variable with variance 0. Then choosing

©0 1..2
/ e 2% dr,
A

to denote the standard Gaussian distribution function, straightforward approximations give

that for all A > 0

N

T(\) = (27)”

(1 —? A" (o/V2m)A e 22 /7 < P{X > \}
(2.1) = U(A\/ o)
< (a/\/27r)/\_1e_%)‘2/°2
One immediate consequence of (2.1) is that

(2.2) lim A72 log P{X > \} = —(20%)7".

A—00

There is a classical result of Landau and Shepp (1970) and Marcus and Shepp (1971) that

gives a result closely related to (2.2), but for the supremum of a general centered Gaussian



1I1.1 BORELL’S INEQUALITY 43

process. If we assume that {X;},er has bounded sample paths with probability one, then
they showed that

(2.3) lim A72 log P{sup X; > \} = —(20%)7%,
A—00 teT

where
o3 = sup BEX}
teT
1s a notation that will remain with us for the remainder of these notes. An immediate
consequence of (2.3) is that for all e > 0 and large enough A

(2.4) P{supX; > A} < eN —3N ot
teT

Since € > 0 is arbitrary, comparing (2.4) and (2.1) we reach the conclusion described above
that the supremum of a centered, bounded Gaussian process behaves much like a single
Gaussian variable with a suitably chosen variance.

In Chapter 5 we shall investigate (2.4) in considerable detail, and show how to close
the gap between (2.4) and (2.1) (i.e. between A\~ and eﬁ>‘2).

Most proofs of results like (2.3) rely on geometrical arguments and the so-called Brunn-
Minkowski inequality for Gauss space (k-dimensional Euclidean space with a k-dimensional
Gaussian measure). The strongest form is due to Borell (1975) in a highly abstract setting
and with a difficult proof. Maurey and Pisier (Pisier (1986)) recently found a very short
proof of a version of Borell’s inequality, which avoids the need to appeal to areas outside of
probability theory. This is, in essence, the proof that we shall give. It has the advantage of
being more self-contained for a probabilistic audience, and the disadvantage that it cannot
reach all the cases that proofs based on isoperimetric inequalities can. Nevertheless, it is
my favourite application of Ité’s formula, for who would have expected to be able to use
stochastic analysis to prove results in Gaussian processes? (By the way — the stochastic
analysis/Gaussian process interface is now a two way street. See Chapter 6 for details on
this.) The result is:

2.1 THEOREM. Let {X;}ier be a centered Gaussian process with sample paths bounded
a.s. Let || X|| = sup,er Xi. Then E|X|| < oo, and for all A > 0

(25) PUIXI— BIX]| > A} < 20847
An immediate consequence of (2.5) is that for all A > E||X||,
(2.6) P{IX| > A} < 2eFO-EIXI)?Y/o}

Thus (2.3) and (2.4) are easily seen to be consequences of Borell’s inequality.
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Indeed, a far stronger result is true, for (2.4) can be replaced by

(2.7) P{sup X, > \} < “A-3N/or
teT

where C' is a constant depending on E||X]|.

Of course, the sharper forms (2.5) and (2.6) will only be useful if we can manage to
calculate E||X||. This, in fact, is one of the main tasks facing us, and we shall see that this
single expectation is the key to a Pandora’s box of other results.

Theorem 2.1 is true in much more generality than we have indicated, and can also be
formulated somewhat differently. Borell’s original result, for example, used the median of
|| X || instead of the mean E||X|| in (2.5). In this formulation, the process X can be allowed
to take values in a quite general Banach space, and || || is then the norm of the Banach space.
(In fact, since the passage from the inequality with the median to that with the mean, or
vice versa, is far from immediate, it is really not quite precise to refer to (2.5) as “Borell’s”
inequality. Nevertheless, we shall not let a minor point like this change our nomenclature.)

Similar results, involving Banach space valued processes, using both the natural norm
1

5 in the exponent in

and its expectation, are also available, but with a constant other than
(2.5). (For details see Pisier (1986, 1989).)

Throughout these notes you should always remember that || || = sup is not a true norm,
and that very often one needs bounds on the tail of sup, | X;| rather than || X|| = sup, X;.
However, a symmetry argument immediately gives one that

P{sup|Xt| > /\} < ZP{ sup X; > /\},
t t

so that Borell’s inequality helps out here as well.
For more on the relation between stochastic analysis and isoperimetric inequalities, see,

for example, Ledoux (1988) and Pisier (1986, 1989). [ ]

The following lemma forms the main step in the proof of Borell’s inequality, and is also
of considerable independent interest. (As usual, we shall also denote the usual Euclidean
norm by || ||, hopefully without creating too much confusion.)

2.2 LEMMA. Let X be a k-dimensional vector of centered, unit variance, independent,
Gaussian variables. If f: ®% — R is Lifshitz, with Lifshitz constant o —i.e. |f(z) — f(y)| <

ollz — y|| for all z,y € R*¥ — then for all A > 0

(2.8) P{If(X) - Bf(X)] > A} < 2e73M/7

PROOF: To start, assume that f has derivatives of up to second order, which certainly
implies that it is Lifshitz, as required by the Lemma..

The main part of the proof is a little out of place in a book about Gaussian processes,
since we are going to need two excursions into stochastic analysis, which seems, at first sight,
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to have nothing to do with the problem at hand. However, if {B;};>0 = {Bj, ...,Bf}tzo
is a k-dimensional Brownian motion — i.e. the B* are i.i.d. standard, real-valued Brownian
motions — then By and X are identically distributed.

The first excursion starts by noting that if G: ®% — R¥ is continuous and coordinate-
wise bounded, and if { , ) is the usual Euclidean inner product, then we have that

oo { [ (6@, a) - 1 [ 6w )

is an (exponential) martingale with initial value, and so constant mean, 1. (For information
on exponential martingales, or, indeed, on any of the stochastic analysis arguments that
follow, Karatzas and Shreve (1988) is a very accessible reference. In this case, the requisite
result is on page 199.) Taking expectations, and setting

a = sup [|G(z)],
zERT

we obtain that for all real 6

Bl (6 [ (6B, m)} <
A standard Chebycheff type argument gives us that
P{|/01<G(Bs), dB.)| > \}
- P{ /01 (G(B.). dB.) > A} + P{ /01<G(B8), dB.) < -}
(2.9) < 27 Bl exp (9/01 (G(B,), dB,)) |

2 2
9= (36°a

o=

6%a?

IN

— e 3N /a
the factor of two in the first inequality coming from symmetry considerations and the last
inequality being a consequence of setting § = \/a?.

Our second excursion involves It6’s formula for real valued functions of vector valued
Brownian motion. (Karatzas and Shreve (1988), page 153.) The form we shall need states
that for a sufficiently smooth F = F(z,t): ®* x Ry — R,

F(By,t) — / ), dBy)

(2.10) + (LA, F(B,,u) + Fi(B,,u)) du,
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where V, and A, denote derivatives of F(x,t) with respect to x, and Fy(z,t) = 0F(z,t)/0t.
We shall also need {P;}¢>0, the Markov semi-group associated with B, determined by the
fact that for smooth ¢: ¥ — R

(Pug)(z) = E*g(Bi)
_ (gﬂ)—k/z/ o(y)e=Hla=sl*/t gy,

where E* denotes expectation with respect to the Brownian motion B starting at the point
z € R* at time zero.

We can now put the above two parts together to prove our Lemma.

Setting F(x,t) = (Pi—f)(x), the conditions of the lemma imply that F is sufficiently
smooth for [t6’s formula to hold. With ¢t =1, s =0, (2.10) yields

(2.11) f(B1) — Ef(B) = / (V(Py_uf)(Bu),dB.).

The last expression in the It6 formula disappears due to the specific form of the semi-group
P,. If you are not familiar with this (it is the heat equation that makes everything work)
you should do the algebra to convince yourself that everything works as claimed.

Since Py is a contraction semi-group, the fact that |f(z)— f(y)| < o||z —y|| immediately
implies that P, f satisfies the same inequality for every ¢t > 0, and so |VP, f(z)|| < o for
almost every x. It then easily follows from (2.9) that

P{|f(B1) — Ef(By)| > A} < 2e73%/7

To finish the proof, we need to lift the differentiability we imposed on f. Any standard
approximation procedure (such as convolution with C*° functions) will work, and so this
part of the proof is left to you. [ |

PrROOF OF THEOREM 2.1: We have two things to prove. Firstly, Theorem 2.1 will follow
immediately from Lemma 2.2 in the case of finite 7' and X having i.i.d. components once
we show that sup(.), or max(.) in this case, was Lifshitz. We shall show this, and lift the
1.1.d. restriction, in one step. The second part of the proof involves lifting the result from
finite to general 7.

To start, let V= E{X'- X} be the covariance matrix of X so that, in this case, we
have

o2 = sup V(i,i) = sup EX7.
1<i<k 1<i<k

Let A be such that A'- A=V, so that X £ ABq, and max; X; £ max;(AB1);.

Now let e; € R* denote the vector with 1 in position 7 and zeroes elsewhere, and
consider the function f(x) = max;(Ax);.
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‘ max(Az); — maX(Ay)i‘ = ‘ max(e; Az) — max(eiAy)‘
< max ‘eiA(:c — y)‘
< max‘eiA| Nl =y,

where the first inequality is elementary and the second is Cauchy-Schwartz.
But
le; Al = el A’ Ae; = elVe; = V(i,1),
so that
[snax(Ae); —max(Ay)| < orlla — g,

which, in view of Lemma 2.2 and the equivalence in law of max; X; and max;(ABy );, estab-
lishes the Theorem for finite T'.

We now turn to lifting the result from finite to general 7. This is, almost, an easy
exercise in approximation. For each n > 0let T}, be a finite subset of T" such that 7}, C T}, 41
and T}, increases to a dense subset of T'. By separability,

a.s.
sup Xy = sup Xy,
teT, teT

and, since the convergence is monotone, we also have that

Esup X; — EsupX;.

€Ty teT
Since a%n — 0% < 00, (again monotonely) this would be enough to prove the general version
of Borell’s inequality from the finite 7' version if only we knew that the one worrisome term,
E supp Xy, were definitely finite, as claimed in the statement of the Theorem. Thus if we
now that the assumed a.s. finiteness of || X|| implies also the finiteness of its mean, we shall

have a complete proof to both parts of the Theorem.
We proceed by contradiction. Thus, assume E||X || = oo, and choose A\, > 0 such that

e~ Ao/oT < i, P{supXt < /\0} >

3
1
teT

Now choose n > 1 such that E||X|7, > 2),, possible since E||X|r, — E|X|r = oo.
Borell’s inequality on the finite space T;, then gives

9 NoloT,

P{[ Xz, - E|X|lz, | > Ao}

PLE|X |z, = [ X[l7 > Xo}

P{|IX|l7 < Ao}

3

1

1> 2~ Ao/o7

vV IV IV IV IV



48 TWO BASIC RESULTS 11

This provides the required contradiction, and so we are done. [ |

I cannot overemphasise how important a result Borell’s inequality is. For example, an
almost immediate consequence of Borell’s inequality is that the a.s. finiteness of || X || implies
that it also has all regular, and some exponential, moments. (c.f. Theorem 3.2.) In later
chapters, especially Chapter 5, we shall see how one can apply Borell’s inequality a number
of times, with almost no other tools, to obtain even sharper bounds on tail probabilities for
suprema.

Now, however, we turn to the second, and equally central, result about Gaussian pro-

cesses.



