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Abstract

We define the Burgers superprocess to be the solution of the stochastic partial
differential equation

∂

∂t
u(t, x) = ∆u(t, x) − λu(t, x)∇u(t, x) + γ

√
u(t, x) W (dt, dx),

where t ≥ 0, x ∈ R, and W is space-time white noise. Taking γ = 0 gives the classic
Burgers equation, an important, non-linear, partial differential equation. Taking
λ = 0 gives the super Brownian motion, an important, measure valued, stochastic
process. The combination gives a new process which can be viewed as a superprocess
with singular interactions. We prove the existence of a solution to this equation and
its Hölder continuity, and discuss (but cannot prove) uniqueness of the solution.
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1 The Burgers superprocess

The Burgers equation is a non-linear partial differential equation (PDE) that was ini-
tially introduced as a ‘simplified’ Navier-Stokes equation but quickly took an impor-
tant place in its own right at the center of non-linear PDE theory. In one dimension,
it takes the form of (1.1) below with γ = 0, and a parameter µ > 0, the viscos-
ity, is usually attached to the Laplacian ∆. The super Brownian motion (SBM) is a
measure valued stochastic process, which in one dimension admits a density which is
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the solution of the stochastic partial differential equation (SPDE) (1.1) with λ = 0.
SBM originated as a diffusion limit for a system of branching particles in [26] and has
been at the center of considerable activity in Probability Theory for the last 20 years.
Mixing these two terminologies, we call a solution of the following SPDE a Burgers
superprocess:

∂

∂t
u(t, x) =

1

2
∆u(t, x) − λu(t, x)∇u(t, x) + γ

√
u(t, x) W (dt, dx). (1.1)

Here W is space-time white noise on R+ ×R [25]. The probabilistic interpretation of
this equation is a model for branching particles with singular interactions, as we shall
explain in a moment, once we have formulated our main result.

Theorem 1.1 For any κ > 0 and initial condition u(0, ·) ∈ L1 ∩ L2+κ there ex-
ists at least one weak (in the probabilistic sense) solution u(t, x) to the SPDE (1.1).
Moreover, this solution is non-negative and belongs to the space C%,2%(R+, R) for any
0 < % < 1

4
(1 − 1

2+κ
), where Cα,β(R+, R) is the space of Hölder continuous functions

of order α in time and β in space. Finally, u(t, ·) ∈ L1(R) and ||u(t, ·)||1 is a Feller
branching diffusion. This implies that the solution dies out in finite time.

By way of motivation, we note that Burgers equation has entered the Probability
literature in a number of ways. Among these are as the normalized limit of the asym-
metric simple exclusion process [15] and via the motion of particle systems with highly
local interactions. We briefly describe the latter, since this is what initially motivated
us. Full details can be found in [24].

Consider a system (X1
t , . . . , Xn

t ) of n particles in R following the n-dimensional SDE

dX i
t = dBi

t +
c

n

∑
j 6=i

dL0
t (X

i −Xj), i = 1, . . . , n, (1.2)

where c > 0, the Bi are independent Brownian motions and L0
t (·) denotes local

time at 0. The local time in (1.2) implies that the interaction among the individual
particles is highly localized. The empirical measures of the X i converge, as n → ∞,
to a deterministic limit whose density satisfies the Burgers equation with λ = 2c. The
moving wave front of the solution of Burgers equation can therefore be understood
as a drift due to particle interaction.

SBM, on the other hand, is a random measure arising as the limit of the empirical
measure of a system of branching Brownian motions. For details, see [20]. In one
dimension we can define it via its density, which is the unique (in law) solution of
(1.1) with λ = 0 and branching rate γ > 0. Strong uniqueness is an open problem.

In view of the above, the Burgers superprocess, the solution of (1.1), can now be
thought of as describing the infinite density limit of a system of branching Brownian
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motions undergoing the singular interaction (1.2). This approach also has a natural
interpretation via a limit (cf. [1]) of historical super-processes with smooth interaction
of the kind studied in [17]. We imagine that both of these ideas can be turned into
theorems, but have not done so and so use them only as heuristics. Nevertheless, it
was these heuristics that lead us to (1.1).

Returning now to Theorem 1.1, note that the Hölder continuity there is essentially
the same as for the super Brownian motion, or for the Burgers SPDE with additive
noise [3]. Indeed, the Burgers superprocess is closely related the nonlinear SPDE

∂

∂t
u(t, x) = ∆u(t, x) +

∂

∂x
f(t, x, u(t, x)) + σ(t, x, u(t, x))W (dt, dx), (1.3)

for which existence and uniqueness on the entire real line were proven in [12] under
a Lipschitz condition for σ and under the assumption σ(t, x, u(t, x)) ≤ h(x) for some
h ∈ L2. The proof was based on extending the methodology developed in [5] and [11]
for equations on bounded intervals. A corresponding result for the case of coloured
driving noise was treated in [6]. For additive noise (σ constant) existence was proven
in [3]. Our result therefore extends [12] in that our σ is both unbounded and non-
Lipschitz, although it is now rather specific.

It is worth noting that the method of proof we adopt for Theorem 1.1 can also cover
the other two “classical” superprocess noises, specifically those arising in the Fleming-
Viot and stepping stone models with forcing noise, viz.√

u(t, x) W (dt, dx)−
∫

u(t, x)
√

u(t, y) W (dt, dy)dx, (Fleming-Viot)

γ
√

u(t, x)(1− u(t, x)) W (dt, dx). (stepping stone)

These models are treated in detail in GB’s thesis [2]. However, the related parabolic
Anderson problem which corresponds to the forcing noise u(t, x)W (dt, dx) is not
covered by our method and its existence and uniqueness remains open.

The proof of Theorem 1.1, which relies on an approach going back at least to [10],
involves a spatial discretization of (1.1) to obtain a multi-dimensional stochastic dif-
ferential equation (SDE). This approach has many advantages. Firstly, if we were to
adopt the route of taking a Lipshitz approximation (bounded or not) to the square
root in (1.1) we would gain little, since the existence of a solution even in this setting
is also unknown. Secondly, our approximation is closely related to a superprocess with
state space Z, so it shares some properties with the continuum version. It should also
be noted that the linear version of this model has been studied in considerable detail
(e.g. [4]). Finally, this approximation provides a numerical scheme for simulation. In
the deterministic setting, such a scheme is often called the numerical method of lines,
where spatial and temporal discretization are carried out independently.

The remainder of the paper is organized as follows. In Section 2, we set up a discrete
approximation to (1.1) via an infinite-dimensional SDE. In Section 3 we derive some
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Lp bounds for these approximations. The tightness argument is carried out in Section
4, and the convergence of these approximations is established in Section 5. In Section
6 we discuss the issue of uniqueness (in law) of the solution of (1.1) (i.e. we explain
why we have not been able to establish it) and the paper concludes with an Appendix
containing some technical results needed along the way.

Finally, we want acknowledge our debts to Leonid Mytnik for a number of very helpful
conversations, in particular regarding the proposed dual process, and to Roger Tribe,
whose careful reading and discovery of too many minor errors in two earlier versions
of this paper is greatly appreciated.

2 An infinite dimensional SDE

We start by taking λ = γ = 1 in (1.1), a convention that we shall adopt throughout
the remainder of the paper. Since we are only interested in the existence of a solution
to (1.1) scaling arguments trivially show that this simplification is unimportant.

Fix N > 2. Denote the rescaled integer lattice by ZN = {. . . ,− 1
N

, 0, 1
N

, . . . } and
define an approximation {UN}N>2 to (1.1) via the solution, if one exists, of the infinite
dimensional SDE

dUN(t, x) =ANUN(t, x) dt +
√

UN(t, x)+ d
(√

NBx(t)
)
, x ∈ ZN , (2.1)

where the Bx are independent Brownian motions chosen to approximate the space-
time white noise in (1.1). For f : ZN → R the various operators in (2.1) are defined
as follows:

AN(f) = ∆Nf +∇NFN(f), (2.2)

FN(f)(x) =
1

3

(
f 2(x− 1

N
) + f 2(x) + f(x)f(x− 1

N
)
)
, (2.3)

∆Nf(x) = N2
(
f(x + 1

N
) + f(x− 1

N
)− 2f(x)

)
, (2.4)

∇Nf(x) = N
(
f(x + 1

N
)− f(x)

)
, (2.5)

f(x)+ = f(x)+ = f(x) ∨ 0, f(x)− = f(x)− = −(f(x) ∧ 0).

The operators ∆N and ∇N are, respectively, the discrete Laplacian and gradient, and
the function FN is an approximation to the square function. Define also

lpN =
{
f : ZN → R : ||f ||pp =

1

N

∑
x∈ZN

|f(x)|p < ∞
}
, (2.6)
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and, when p = 2, the inner product

〈f, g〉N =
1

N

∑
x∈ZN

f(x)g(x), for f, g ∈ l2N . (2.7)

Note that the norm in lpN is just the usual Lp norm if the functions f are extended
to step functions on R. The following monotonicity properties of AN are crucial: for
any f ∈ l2N

〈1,AN(f)〉N = 0, (2.8)

〈f,AN(f)〉N =−||∇Nf ||1 ≤ 0. (2.9)

Property (2.8) is a direct consequence of the fact that ∆N and ∇N are difference
operators. Property (2.9) follows by summation by parts and from the form of FN ,
which leads to a telescopic sum, the discrete analogue of

∫∞
−∞ u(x)(u2(x))′dx = 0.

Remark 2.1 The choice of FN above is for later convenience, for which it will be
important that (2.9) holds. If, for example, we were to take FN(x) = x2, then (2.9)
would hold only for non-negative f , which would cause technical problems in the proofs
of Section 3.

Theorem 2.2 With UN(0, ·) ∈ l1N an initial condition for the SDE system (2.1),

(i) There exists a unique strong solution UN(t, x) to (2.1) which is strongly continuous
in l2N and such that, for any T > 0,

E
{

sup
0≤t≤T

||UN(t, ·)||22
}

<∞, (2.10)

E
{
||UN(T, ·)||1

}
<∞. (2.11)

(ii) In addition, assume that UN(0, x) ≥ 0. Define

ΓN = {f ∈ l2N : for some x ∈ ZN , |f(x + 1
N

)− f(x− 1
N

)| ≥ 3N},
ρN = inf{t ≥ 0 : UN(t) ∈ ΓN}. (2.12)

If UN(0, ·) /∈ ΓN , then, for t ≤ ρN , UN(t, x) ≥ 0 for all x ∈ ZN .

Remark 2.3 By standard Markov process theory, if UN(0, ·) /∈ ΓN , then P{ρN >
0} = 1. We shall show in Section 4 that limN→∞ P{ρN ≥ T} = 1 for all T > 0.

PROOF. We first prove the existence of a solution via approximation by a finite
system. We shall follow closely the argument of Shiga and Shimuzu [22] who consider
a related model under slightly different hypotheses on the coefficients. For fixed N > 2
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and for each integer m > 1, set Λm
N = ZN ∩ [−m, m]. As a first step, for given initial

condition x = {xi}i∈ZN
∈ l2N , consider the following equation, defining a process xm(t)

with values in l2N :

xm
i (t) =

xi +
∫ t
0 ANxm

i (s) ds +
∫ t
0

√
Nxm

i (s)+ dBi(s) i ∈ ΛN
m,

xi i /∈ ΛN
m.

(2.13)

We retain the notation (2.3)–(2.5) for the operators that appear in (2.13), with the
small change that they are now taken to have periodic boundary conditions on ΛN

m.
This will ensure that (2.8) and (2.9) still hold. In the following lemma, we establish
the existence and uniqueness of a solution to (2.13), along with some of its properties.
We shall then return to the proof of Theorem 2.2.

Lemma 2.4 Let x = {xi}i∈ZN
∈ l2N . Then, for any m > 1, there exists a unique

strong solution to the system (2.13). Moreover, for any T > 0, there exists a finite C,
that depends on the initial condition x, on T and N , but not on m, such that

E
{ ∑

i∈ZN

|xm
i (t)|

}
≤C, t ≤ T, (2.14)

E
{

sup
0≤t≤T

∑
i∈ZN

xm
i (t)2

}
≤C, (2.15)

sup
0≤t≤T

E
{[ ∑

i∈ZN

xm
i (t)2

]2}
≤C. (2.16)

PROOF. Weak existence for the system (2.13) follows from the Skorokhod existence
theorem, and non-explosion from the one-sided growth condition. Pathwise uniqueness
can then be shown by the standard Yamada-Watanabe argument or via a local time
argument as in [21]. Indeed, by a lemma of Le Gall (see Ch. IX in [21]) the local

time processes at 0 for the martingales
∫ t
0

√
Nxm

i (s)+dBi(s) are 0 for each i. We use
standard arguments based on Itô’s formula to compute moments. Take R > 0 and
let σR = inf{t : |xm(t)| = R}, where | · | is the Euclidean norm on R2m+1. Define
xR(t) = xm(t ∧ σR). By Tanaka’s formula and the form of the coefficients of (2.13),

E
{ ∑

i∈ZN

xR
i (t)+

}
≤

∑
i∈ZN

(xi)+ + c1

∫ t

0

∑
i∈ZN

E
{
xR

i (s)+

}
ds + c2

∫ t

0

∑
i∈ZN

E
{
xR

i (s)2
}
ds.

Furthermore, by (2.9) and Itô’s formula,

E
{ ∑

i∈ZN

xR
i (t)2

}
≤

∑
i∈ZN

x2
i + N

∫ t

0

∑
i∈ZN

E
{
xR

i (s)+

}
ds. (2.17)

Summing these two inequalities, an application of Gronwall’s inequality to
E

{ ∑
i∈ZN

(xR
i (s)+ + xR

i (s)2)
}

gives that, for any T , there exist constants c3 and c4,
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depending only on
∑

i∈ZN
xi,

∑
i∈ZN

x2
i , N and T , such that

E
{ ∑

i∈ZN

xR
i (t)+

}
≤ c3, E

{ ∑
i∈ZN

xR
i (t)2

}
≤ c4 for t ≤ T. (2.18)

Since this bound does not depend on R, we can let R →∞ so that P{σR ≤ T} → 0,
which then yields the same bounds for xm(t). Using these and a further application
of Tanaka’s formula for xm

i (t)− gives (2.14). The inequality (2.15) now follows from
(2.18) and an application of Burkholder’s inequality. The final bound (2.16) follows
from (2.14) and (2.15) via reasonably straightforward calculations. 2

Returning to the proof of Theorem 2.2, and following the argument of [22], we shall
establish the following bounds, for T > 0, t, s < T , |t− s| ≤ 1 and constants C1, C2:

sup
m

E

{
sup

0≤t≤T
||xm(t)||22

}
≤C1, (2.19)

sup
m

E
{
||xm(t)− xm(s)||22

}
≤C2|t− s|. (2.20)

These bounds correspond exactly to (2.7)–(2.8) of [22], and once proved, their ar-
gument establishes the existence of a unique strong solution to (2.1). We rescale
the norms in Lemma 2.4 by the constant 1

N
. Note that UN(0, ·) ∈ l1N implies that

UN(0, ·) ∈ l2N . Then (2.19) follows from (2.15), since

E

{
sup

0≤t≤T
||xm(t)||22

}
≤ E

 1

N

∑
i/∈ΛN

m

x2
i

 + E

 sup
0≤t≤T

1

N

∑
i∈ΛN

m

(xm
i (t))2

 ,

which is bounded independently of m by Lemma 2.4. As for (2.20), note that

||xm(t)− xm(s)||22≤
2

N

∑
i∈ΛN

m

(∫ t

s
∆Nxm

i (u) +∇NFN(xm
i (u))du

)2

+
2

N

∑
i∈ΛN

m

(∫ t

s

√
Nxm

i (u)+ dBi(u)
)2

≤ 2

N


∫ t

s

 ∑
i∈ΛN

m

(∆Nxm
i (u) +∇NFN(xm

i (u)))2

1/2

du


2

+
2

N

∑
i∈ΛN

m

(∫ t

s

√
Nxm

i (u)+ dBi(u)
)2

, (2.21)
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where the last inequality follows from Minkowski’s inequality in the form ([16] p.41)

(∫
Y

(∫
X

f(x, y)ν(dx)
)p

µ(dy)
)1/p

≤
∫

X

(∫
Y

f(x, y)pµ(dy)
)1/p

ν(dx).

Taking expectations, the bound
∑

i∈ΛN
m

(∆Nxi +∇NFN(x)i)
2 ≤ 36N4|x|22 + 4N2|x|42,

Minkowski’s inequality and (2.16) control the first term in (2.21), and the second
can be bounded by (2.14).To complete the proof of (i), it is enough to note that the
bounds (2.10) and (2.11) follow, respectively, from the bounds (2.19) and (2.14) and
Fatou’s inequality.

Turning now to part (ii) of the theorem, to establish the non-negativity of UN(t, x),
we first rewrite the drift term as

ANf(x) =
N

3

[
f(x + 1

N
) + f(x− 1

N
)
][

3N + f(x + 1
N

)− f(x− 1
N

)
]

+
N

3
f(x)

[
f(x + 1

N
)− f(x− 1

N
)− 6N

]
.

We use a pathwise argument and take t ≤ ρN to obtain, by Tanaka’s formula,

∑
x∈ZN

UN(t, x)− =−N

3

∫ t

0

∑
x∈ZN

1{UN (s,x)<0}
[
UN(s, x + 1

N
)+ + UN(s, x− 1

N
)+

]
×

[
3N + UN(s, x + 1

N
)− UN(s, x− 1

N
)
]
ds

+
N

3

∫ t

0

∑
x∈ZN

1{UN (s,x)<0}
[
UN(s, x + 1

N
)− + UN(s, x− 1

N
)−

]
×

[
3N + UN(s, x + 1

N
)− UN(s, x− 1

N
)
]
ds

−N

3

∫ t

0

∑
x∈ZN

1{UN (s,x)<0}UN(s, x)
[
UN(s, x + 1

N
)− UN(s, x− 1

N
)− 6N

]
ds

∆
= A1 + A2 + A3.

If UN(s) /∈ ΓN , 0 ≤ s ≤ t then it is easy to see that A1 and A3 are negative and

A2≤
N

3

∫ t

0

∑
x∈ZN

1{UN (s,x)<0}
[
UN(s, x + 1

N
)− + UN(s, x− 1

N
)−

]
× 6N.

An application of Gronwall’s inequality then shows that
∑

x∈ZN
UN(t, x)− = 0, for

t ≤ ρN , which shows that the process stays non-negative, at least up to time ρN . 2
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3 Lp bounds for the semi-discrete superprocess

In this section, we derive some preliminary, uniform (in N), Lp bounds for our ap-
proximating processes. The reason for our restrictions regarding the model (i.e. the
square root for the noise term and the square for the nonlinearity) should become
clear after reading the following proofs. As is standard in the SPDE literature, our
bounds will depend on Green’s functions.

Let pN(t, x, y), x, y ∈ ZN be the semigroup generated by the discrete Laplacian ∆N ,
so that pN solves

∂

∂t
pN(t, x, y) = ∆NpN(t, x, y), pN(0, x, y) = δxy, x, y ∈ ZN . (3.1)

We define the Green’s function and its discrete derivative as follows, for x, y ∈ ZN .

GN(t, x, y) = NpN(t, x, y), (3.2)

G′
N(t, x, y) = ∇−

NGN(t, x, y)
∆
= N(GN(t, x, y)−GN(t, x, y − 1

N
)). (3.3)

Note that GN is an approximation to the Gaussian kernel. The following lemma, a
proof of which is given in the Appendix, summarizes the Lp properties of the Green’s
function, which are essentially the same as their Gaussian counterparts.

Lemma 3.1 With GN and G′
N as defined above, and || · ||p defined in (2.6), the fol-

lowing bounds hold uniformly in N for s < t ≤ T and for all x, y ∈ ZN . The constant
C varies from line to line and may depend on p, ρ, α and T .

||GN(t, x, ·)||p ≤ Ct−
1
2
(1− 1

p
) for 1 ≤ p ≤ 2, (3.4)

||G′
N(t, ·, y)||p ≤ Ct−1+ 1

2p for p ≥ 1. (3.5)

If 1 ≤ p ≤ 2 and 0 < % < 1, then

||GN(t, ·, x)−GN(s, ·, y)||p ≤ C
(
|t− s|% + |y − x|2%

)
s−

1
2
−%+ 1

2p . (3.6)

If 1 ≤ p ≤ 2 and 1 > α > % + 1
2
(1− 1

p
) > 0, then

∫ t

0
||(t− u)α−1GN(t− u, ·, x)− (s− u)α−1GN(s− u, ·, y)1(u≤s)||p du (3.7)

≤ C
(
|t− s|% + |y − x|2%

)
.

Our next lemma establishes some important Lp properties for a certain stochastic
convolution.
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Lemma 3.2 Let {By(t)}y∈ZN
be a collection of independent Brownian motions on a

probability space
(
Ω,F ,Ft, P

)
, and let uN be an l2N valued, non-negative, continuous

and Ft adapted stochastic process for which

E
{

sup
0≤t≤T

||uN(t)||q1
}
≤ K (3.8)

for some q > 2 (and therefore for all q′ ≤ q) and K > 0. Define

ηN(t, x) =
1√
N

∑
y∈ZN

∫ t

0
GN(t− s, x, y)

√
uN(s, y)dBy(s). (3.9)

Then, for any T > 0, there exist constants K1, K2, K3, independent of N , such that

E
{

sup
t≤T

||ηN(t)||p2
}
≤K1 for p ≤ 2q, (3.10)

E
{

sup
t≤T

||ηN(t)||p
}
≤K2 for p < q, (3.11)

E
{
||ηN(t)||pp

}
≤K3 for t ≤ T, p < 2q. (3.12)

PROOF. To prove (3.10) we use the so-called “factorization formula” (e.g. [7] p128)
which uses the semigroup property of GN and implies that ηN can be written as

ηN(t, x) =
sin(πα)

π

∫ t

0
(t− s)α−1 1

N

∑
z∈ZN

GN(t− s, x, z)YN(s, z)ds, (3.13)

where

YN(s, z) =
∫ s

0

1√
N

∑
y∈ZN

(s− v)−αGN(s− v, z, y)
√

uN(v, y)dBy(v). (3.14)

Note that by Burkholder’s inequality for L2 valued martingales ([18] p213), and using
successively Young’s inequality, (3.4), Minkowski’s inequality, and finally (3.8), we
have, for α < 1/4 and p/2 ≤ q, and uniformly in s ≤ T ,

E {||YN(s)||p2}≤CE
{[ ∫ s

0

1

N2

∑
x,y∈ZN

(s− u)−2αGN(s− u, x, y)2uN(u, y)du
] p

2
}

≤CE
{[ ∫ s

0
(s− u)−2α−1/2||uN(s, ·)||1du

] p
2
}

(3.15)

≤C
[ ∫ s

0
(s− u)−2α−1/2

[
E

{
||uN(s, ·)||

p
2
1

}] 2
p du

] p
2

< C.
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Returning to (3.10), note that by the Young and Hölder inequalities, for α > 1/p,

E
{

sup
t≤T

||ηN(t)||p2
}
≤E

{[
sup
t≤T

∫ t

0
(t− s)α−1||YN(s)||2ds

]p}
≤CE

{
sup
t≤T

[ ∫ t

0
(t− s)(α−1) p

p−1 ds
]p−1

∫ t

0
||YN(s)||p2ds

}

≤CE
∫ T

0
||YN(s)||p2ds,

from which (3.10) follows by (3.15) provided that p > 4 with p/2 ≤ q. To prove (3.11)
take γ > 0, β = 2p

p+2
and note that the Young, Hölder and Jensen inequalities imply

E
{

sup
t≤T

||ηN(t)||p
}
≤CE

{
sup
t≤T

∫ t

0
(t− s)α−1||GN(t− s)||β||YN(s)||2ds

}
≤CE

{
sup
t≤T

∫ t

0
(t− s)α− 3

2
+ 1

2β ||YN(s)||2ds
}

≤C
[ ∫ T

0
s(α− 3

2
+ 1

2β
)γds

] 1
γ

E
{[ ∫ T

0
||YN(s)||

γ
γ−1

2 ds
] γ−1

γ
}

≤C
[ ∫ T

0
E||YN(s)||

γ
γ−1

2 ds
] γ−1

γ

, (3.16)

which will prove (3.11), provided that α < 1/4 and γ
2(γ−1)

≤ q in order to use (3.15),

and α > 3
2
− 1

2β
− 1

γ
in the above calculation. This leads to 2p < γ

γ−1
.

The proof of (3.12) is similar up to the second line of (3.16) and concludes with a
further application of Minkowski’s inequality. This gives

E
{
||ηN(t, x)||pp

}
≤C

[ ∫ t

0
(t− s)α− 3

2
+ 1

2β

[
E

{
||YN(s)||p2

}]1/p
ds

]p

.

We now demand that α > 1/2 − (p + 2)/4p, which holds for any p > 0, and
α < 1/4, p < 2q, which we required for (3.15). 2

Our next preparatory step involves finding a L2 bound for the non-negative approxi-
mating process. Thus, let fN ∈ l2N be a sequence of non-negative functions for which ||fN ||1 + ||fN ||2+κ is bounded, uniformly in N, for some κ > 0,

f̄N → f in C(R), where f̄N is the polygonal extension of fN .
(3.17)

Recall the definition of ΓN given in (2.12), and let ŨN(t, x) be the solution to

11



dŨN(t, x) =
[
∆N ŨN(t, x) + 1[0,ρN ](t)∇NFN(ŨN)(t, x)

]
dt

+
√

ŨN(t, x) d
(√

NBx(t)
)
, x ∈ ZN , (3.18)

ρN = inf{t : ŨN(t) ∈ ΓN}. (3.19)

Lemma 3.3 Let fN satisfy (3.17). Then there exists a unique solution ŨN(t) ∈ l2N to
(3.18), with initial value ŨN(0) = fN and which is non-negative. Moreover, for any
T > 0 and p > 0, there exists K, independent of N , such that, for this solution,

E
{

sup
0≤t≤T

||ŨN(t)||p1
}
≤ K. (3.20)

Finally, the following representation holds, with GN and G′
N defined by (3.2)–(3.3).

ŨN(t, x) =
1

N

∑
y∈ZN

GN(t, x, y)fN(y)− 1

N

∑
y∈ZN

∫ t∧ρN

0
G′

N(t− s, x, y)FN

(
ŨN(s)

)
(y)ds

+
1√
N

∫ t

0

∑
y∈ZN

GN(t− s, x, y)
√

ŨN(y, s)dBy(s)

∆
= IN(t, x) + DN(t, x) + ηN(t, x). (3.21)

PROOF. Note that ŨN is well defined, as it solves equation (2.1) for t ≤ ρN , and af-
terwards the same equation but without the term in∇NFN for t ≥ ρN . (i.e. It becomes
a ‘super random walk’.) In addition, by Theorem 2.2, ŨN(t) ≥ 0 and ŨN(t) ∈ l1N .

Therefore, if we introduce the total mass process MN(t)
∆
= 〈1, ŨN(t)〉N = ||ŨN(t)||1

then, by (2.8), MN(t) is a martingale with d〈MN〉t = MN(t)dt. Thus, as for the super
random walk and the super Brownian motion, MN(t) is a Feller branching diffusion,

and it is well known that E
{

sup0≤t≤T MN(t)p
}

< K, for some K > 0 that depends on

the moments of the initial condition, T and p but not N . This and condition (3.17)
establish (3.20). The proof of (3.21) follows as for the case without ρN . 2

Our next step is to establish the bounds for ||ŨN ||p that will be the main ingredients in
the proof of tightness. We have just established their validity for p = 1, uniformly in
N , and, by Theorem 2.2, for p = 2 for fixed N . The main difficulty will lie in proving
the uniformity of the latter in N . We proceed as in [12] and have now come to the
point where our method requires the quadratic non-linearity assumption in (1.1).

Let ηN(t, x), t ≥ 0, x ∈ R, be the random field defined in Lemma 3.2, taking
uN = ŨN , and set vN = ŨN − ηN . Then it is easy to see that vN satisfies the equation

∂

∂t
vN(t, x) = ∆NvN(t, x) + 1[0,ρN ](t)∇NFN(vN(t) + ηN(t))(x), x ∈ ZN . (3.22)

12



Proposition 3.4 Let vN = ŨN − ηN be as above. Then

||vN(t)||22≤
[
||vN(0)||22 +

1

4

∫ t

0
||ηN(s)||44

]
exp

[
1

2

∫ t

0
||ηN(s)||42ds

]
.

PROOF. ¿From (3.22), the chain rule and summation by parts lead to

||vN(t)||22 = ||fN ||22 − 2
∫ t

0
||∇−vN(s)||22ds−

∫ t∧ρN

0
〈∇−

NvN(s), FN(vN(s) + ηN(s))〉Nds

∆
= ||vN(0)||22 − 2

∫ t

0
||∇−vN(s)||22ds− I1(t)− I2(t)− I3(t),

where the three integrals correspond to the the three terms in the decomposition

FN(f + g)(x) = FN(f)(x) + FN(g)(x)

+
1

3

[
f(x)

(
2g(x) + g(x− 1

N
)
)

+ f(x− 1
N

)
(
g(x) + 2g(x− 1

N
)
)]

.

¿From the definition of FN we have I1
∆
=

∫ t∧ρN
0 〈∇−

NvN(s), FN(vN(s))〉Nds = 0. Also,

I2(t)
∆
=

∫ t∧ρN

0
〈∇−

NvN(s), FN(ηN(s))〉Nds

≤ 1

3

∫ t∧ρN

0
||∇−vN(s)||2

[
2||ηN(s)||24 +

(
〈η2

N(s, ·), η2
N(s, ·+ 1

N
〉N

)1/2
]

≤
∫ t∧ρN

0
||∇−vN(s)||2||ηN(s)||24ds

≤
∫ t

0
||∇−vN(s)||22ds +

1

4

∫ t

0
||ηN(s)||44ds,

where we used the Cauchy-Schwartz inequality in the third line. To bound I3 we apply
Lemma 7.1 to each term in the next line to find

I3(t)
∆
=

∫ t∧ρN

0

1

3N

∑
x∈ZN

∇−
NvN(s, x)

{
vN(s, x)

(
2ηN(s, x) + ηN(s, x + 1

N
)
)

+vN(s, x + 1
N

)
(
ηN(s, x) + 2ηN(s, x + 1

N
)
)}

ds

≤
∫ t

0
||∇NvN(s)−||22ds + 2

∫ t

0
||ηN(s)||42||vN(s)||22ds.

Putting everything together, we have

||vN(t)||22 ≤ ||vN(0)||22 +
1

4

∫ t

0
||ηN(s)||44ds + 2

∫ t

0
||ηN(s)||42||vN(s)||22ds.

13



The result then follows from Bellman’s inequality. 2

¿From this proposition, Lemma 3.2 and Lemma 3.3, we have the following L2 estimate
on the solution to the discrete Burgers SPDE.

Corollary 3.5 Let ŨN be the process defined by (3.18), with initial condition fN

satisfying (3.17). Then, uniformly in N ,

E

{
log+

(
sup
t≤T

||ŨN(t)||2
)}

≤ K. (3.23)

We finish this section by deriving a Lq estimate for ŨN for q > 2.

Proposition 3.6 Let ŨN(t) be a solution of (3.18) with fN = ŨN(0) satisfying (3.17)
for some κ > 0. Then, for any T > 0 and q ≤ 2 + κ there is a constant K such that

sup
N

E
{

log+

(
sup
t≤T

||ŨN(t)||q
)}

< K. (3.24)

PROOF. In order to establish (3.24) we shall show that the bound is satisfied for
each of the three terms corresponding to IN , DN and ηN in (3.21). By the condition
on the initial value, the result for the IN term is an immediate consequence of Young’s
inequality. For the DN term, note that by Young’s inequality and (3.5) we have

||DN(t)||q ≤
∫ t∧ρN

0
||G′

N(t− s, x, ·)||q||FN(ŨN(s))||1ds

≤C
∫ t∧ρN

0
(t− s)−1+ 1

2q ||ŨN(s)||22ds

≤C
∫ t

0
(t− s)−1+ 1

2q ||ŨN(s)||22ds.

Therefore, there exists a constant C, independent of N , such that

log+

(
sup
t≤T

||DN(t)||p
)
≤ C log+ T + 2C log+

(
sup
t≤T

||ŨN(t)||2
)
,

and so the term corresponding to DN can now be bounded via (3.23). The bound for
ηN follows from (3.11) and Jensen’s inequality. 2
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4 Tightness of the approximating processes

In this section we shall show that the sequence of processes ŨN , or rather its spatial
polygonal interpolation, is tight in C = C([0,∞), C(R)). We identify this space with
C([0,∞)× R) endowed with the topology of uniform convergence on compacts.

For a v = v(t, x) ∈ C and K > 0, δ > 0, define its modulus of continuity as

wK
δ (v)

∆
= sup{|v(t, x)− v(s, y)| : |x− y| ∨ |t− s| ≤ δ and |x|, |y|, t, s ≤ K}. (4.1)

The next lemma gives standard criteria for tightness (e.g. Chapter XIII of [21]).

Lemma 4.1 A sequence {Pn} of probability measures on C is tight if, and only if,
the following two conditions are satisfied:

C1: For every ε, M > 0 there exist A > 0 and n0 ≥ 0 such that

Pn

{
sup
|x|≤M

|v(0, x)| > A
}
≤ ε, for every n ≥ n0.

C2: For every ζ, ε, K > 0 there exists a δ > 0 and n0 ≥ 0 such that

Pn

{
wK

δ (v) > ζ
}
≤ ε, for every n ≥ n0.

We can now state the main result of this section.

Theorem 4.2 Let ŨN(t) be as defined in (3.18) with ŨN(0, x) = fN(x) which satisfies
(3.17), and let ŪN(t, x) be its continuous extension to x ∈ R as defined by polygonal
interpolation. Then the sequence of processes {ŪN}N∈N is tight in C([0,∞)× R).

PROOF. Note first that, for each N , it suffices to limit the supremum in (4.1) to
x, y ∈ ZN , as the resulting restricted modulus of continuity bounds, up to a constant
factor, the unrestricted one. We shall see that in all our bounds the spatial increments
need not be restricted to |x|, |y| < K, so we shall require only that s, t < T . We still
denote the modulus of continuity with these two minor changes by ωT . Now consider
the tightness of each of (the extension of) the terms in (3.21) separately. The term
IN involves only ŨN(0, x) and by a standard result (e.g. [10])it converges in C.

To show the tightness of ηN we use Lemma 4.1. The first condition is trivial since
η(0) = 0. Fix T, ε, ζ > 0, and κ > 0 such that (3.17) is satisfied. For R > ||f ||2+κ,
define a sequence of stopping times τN = inf{t : ||ŨN(t)||2+κ ≥ R}. By Proposition 3.6
and Markov’s inequality, we can choose R such that
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sup
N

P{τN ≤ T} < ε/2. (4.2)

Let

η̃N(t, x)
∆
=

1√
N

∑
z∈ZN

∫ t

0
GN(t− u, x, z)1{τN≥u}

√
ŨN(u, z)dBz(u).

Since it is trivial that ηN(t ∧ τN , x) = η̃N(t, x), we can write

P
{
wT

δ (ηN) > ζ
}

= P
{
{wT

δ (ηN) > ζ} ∩ {τN > T}
}

+ P
{
{wT

δ (ηN) > ζ} ∩ {τN ≤ T}
}

≤P
{
wT

δ (η̃N) > ζ
}

+ ε/2.

Therefore, we have to show that we can find δ such that

sup
N

P
{
wT

δ (η̃N) > ζ
}
≤ ε/2. (4.3)

To prove this, we use the factorization formula as in (3.13)–(3.14). Define ỸN as

ỸN(t, x) =
1√
N

∑
z∈ZN

∫ t

0
(t− u)−αGN(t− u, x, z)1{τN≥u}

√
ŨN(u, z)dBz(u), x ∈ ZN .

Note that

η̃N(t, x) =
sin(πα)

π

1

N

∫ t

0

∑
z∈ZN

(t− u)α−1GN(t− u, x, z)ỸN(u, z)du,

Throughout the remainder of this proof we take q = 4 + 2κ, with κ as Proposition
3.6, 1 < p = q

q−1
< 2, and α < 1

4
, with additional restrictions on α to be added later.

Proceeding as in (3.15) (see also [12] p. 791) we have by the Burkholder, Minkowski
and Young inequalities

E
{
||ỸN(t, u, ·)||qq

}
≤CE

{ ∫ t

0
(t− u)−2α||G2

N(t− u, ·, ·)||1||1{τN≥u}ŨN(u, ·)||2+κdu
} q

2

≤CR
q
2

{ ∫ t

0
(t− u)−2α− 1

2 du
} q

2

. (4.4)

Applying now the Hölder and Minkowski inequalities, as well as (4.4) and (3.7) with
% and α chosen so that 0 < 1

2(4+2κ)
+ % < α < 1

4
, we have
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E
{

sup
x,y∈ZN , s,t<T

|η̃N(t, x)− η̃N(s, y)|q
}

≤ C sup
x,y∈ZN , s,t<T

[ ∫ t

0
||(t− u)α−1GN(t− u, x, ·)

−(s− u)α−1GN(s− u, y, ·)1(u≤s)||p
[
E

{
||ỸN(u, ·)||qq

}] 1
q du

]q

≤ C sup
x,y∈ZN , s,t<T

(
|t− s|% + |y − x|2%

)q
. (4.5)

This bound and Markov’s inequality show that we can choose δ so that (4.3) holds.

We now turn to the DN term, for which C1 is trivial. To check C2 we shall show
that, for t ≤ τN , we can find δ such that wT

δ (DN) < ζ. This, combined with (4.2),
will establish the required bound. Define the following subsets of [0, T ]2 × Ω:

A1 =
{
s < t ≤ ρN , τ ≥ t

}
, A2 =

{
s ≤ ρN ≤ t, τ ≥ t

}
, A3 =

{
ρN ≤ s < t, τ ≥ t

}
.

Let x < y ∈ ZN . On A1, DN does not depend on ρN , and so we have

∣∣∣DN(t, x)−DN(s, y)
∣∣∣

=
∣∣∣∣ ∫ t

0

1

N

∑
z∈ZN

(
G′

N(t− u, x, z)−G′
N(s− u, y, z)1(u≤s)

)
FN(UN)(u, z)du

∣∣∣∣
≤

∣∣∣∣ ∫ s

0

1

N

∑
z∈ZN

G′
N(t− u, x, z)−G′

N(s− u, y, z)FN(UN)(u, z)du
∣∣∣∣

+
∫ t

s

1

N

∑
z∈ZN

∣∣∣G′
N(t− u, x, z)FN(UN)(u, z)

∣∣∣du

∆
= I1(s) + I2(s, t).

The variables s and t in the definition of I1 and I2 refer only on the range of integra-
tion, not on their appearance in the integrands. We first bound I1.

I1(s) =
∣∣∣∣ ∫ s

0

1

N

∑
z∈ZN

(
GN(t− u+s

2
, x, z)−GN( s−u

2
, y, z)

)
XN(s, u, z)du

∣∣∣∣
≤

∫ s

0
||GN(t− u+s

2
, x, ·)−GN( s−u

2
, y, ·)||p ||XN(s, u, ·)||qdu,

where 1
p

+ 1
q

= 1 and

XN(s, u, z) =
1

N

∑
ς∈ZN

G′
N( s−u

2
, ς, z)FN(UN)(u, ς).

Using Young’s inequality with 1 + 1
q

= 1
β

+ 1
1+κ/2

and (3.5) we have
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||XN(s, u, ·)||q ≤C||G′
N( s−u

2
, ·, 0)||β ||UN(u, ·)||22+κ ≤ CR2(

s− u

2
)−1+ 1

2β .

Now choose %, 0 < % < 1
2
( 1

β
− 1

q
) = 1

2
(1− 1

2+κ
). Then, by (3.6), we have

I1≤CR
(
|y − x|2% + |t− s|%

) ∫ s

0
(s− u)−1+ 1

2
( 1

β
− 1

q
)−%du

≤CR
(
|y − x|2% + |t− s|%

)
.

We now estimate I2. With the same notation as for I1, we have

I2 =
∣∣∣∣ ∫ t

s

1

N

∑
z∈ZN

GN( t−u
2

, x, z)XN(t, u, z)du

∣∣∣∣
≤

∫ t

s
||GN( t−u

2
, x, ·)||p||XN(t, u, ·)||qdu

≤C
∫ t

s
(t− u)−

1
2
+ 1

2p
−1+ 1

2β du

≤C|t− s|%.

Therefore, on A1, we have

∣∣∣DN(t, x)−DN(s, y)
∣∣∣ ≤ C

(
|y − x|2% + |t− s|%

)
. (4.6)

On A2, with the same notation as above,
∣∣∣DN(t, x)−DN(s, y)

∣∣∣ ≤ I1(s)+ I2(s, ρN), so
that I1 can be bounded as for the situation A1 and, for I2, we are led to

I2(s, ρN) ≤ C
∫ ρN

s
(t− u)−

1
4 (t− u)−1+ 1

2q du ≤ C|t− s|%.

On A3, I2 = 0 and

∣∣∣DN(t, x)−DN(s, y)
∣∣∣≤ I1(ρN)

≤
∫ ρN

0
||GN(t− u+s

2
, x, ·)−GN( s−u

2
, y, ·)||2 ||XN(s, u, ·)||2du

≤
∫ s

0
||GN(t− u+s

2
, x, ·)−GN( s−u

2
, y, ·)||2 ||XN(s, u, ·)||2du

≤C
(
|y − x|2% + |t− s|%

)
.

In conclusion, we have the bound (4.6) on
⋃

Ai = {supt≤T ||ŨN ||2+κ < R} and for
any 0 ≤ s < t < T , x < y ∈ ZN . Since this bound depends on t, s, x and y only
through the increments, we can find δ such that (4.6) is uniformly bounded by ζ for
|y − x| ∨ |t− s| ≤ δ and s, t ≤ T , and we are done. 2
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Corollary 4.3 Let ρN be as in (3.18). Then ρN → ∞ in probability. Moreover, the
sequence of polygonal interpolations to the UN of (2.1) is tight in C and all its limit
points are non-negative.

PROOF. Since P{ŨN(t, x) = UN(t, x), t ≤ ρN , x ∈ ZN} = 1, the second statement
follows from the first one and Theorems 2.2 and 4.2. Our bounds (4.5) and (4.6) on
the modulus of continuity of ŨN suffice to prove the first statement.

5 Existence of the Burgers superprocess

We now turn to the main task of this paper, that of establishing the existence of a
solution to (1.1) – the Burgers superprocess. Due to the presence of the space-time
white noise, (1.1) should be written in the weak form,

∫
R

u(t, x)ϕ(x)dx =
∫

R
u(0, x)ϕ(x)dx (5.1)

+
∫ t

0

∫
R

u(s, x)ϕ′′(x)dxds +
∫ t

0

∫
R

u2(s, x)ϕ′(x)dsdx

+
∫ t

0

∫
R

√
u(s, x)ϕ(x) W (ds, dx),

for ϕ ∈ C2
c , the space of C2 functions on R with compact support. Assume that the

initial value f (deterministic for simplicity) satisfies the conditions of Theorem 1.1.
Then, applying now standard techniques (cf. [14,25] – details are given in [2]) it is not
hard to show that the SPDE (5.1) is equivalent to the following martingale problem.

For any ϕ ∈ C2
c

Mϕ(t) := 〈u(t, ·), ϕ〉 − 〈u(0, ·), ϕ〉 −
∫ t
0〈u(s, ·), ϕ′′〉 − 〈u2(s, ·), ϕ′〉ds

is an Ft square integrable martingale with quadratic variation

〈Mϕ〉t =
∫ t
0〈u(s, ·), ϕ2〉 ds.

(5.2)

We can now finally complete the proof of the central Theorem 1.1. What remains of
the proof, for which we shall skip some details, is quite standard (see e.g. [19]) and
is based on showing that the approximating processes UN converge to the solution of
the equivalent martingale problem (5.2).

PROOF OF THEOREM 1.1. By Corollary 4.3, we can take a weakly converging
subsequence of polygonal interpolations of UN , which we again denote by ŪN . By a
standard Skorokhod embedding argument, we can find a probability space such that
the convergence is with probability one. We shall assume that we are on that space
and denote the limit by u. By Corollary 4.3, u(t, x) ≥ 0. Moreover, by Fatou’s Lemma
and the bounds of Section 3, u(t, ·) ∈ L2(R) ∩ L1(R) a.s. For ϕ ∈ C2

c we define
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Zϕ
N(t) =

1

N

∑
x∈ZN

ϕ(x)ŪN(t, x)− 1

N

∑
x∈ZN

ϕ(x)fN(x)

−
∫ t

0

1

N

∑
x∈ZN

ϕ(x)∆N ŪN(s, x)ds−
∫ t

0

1

N

∑
x∈ZN

ϕ(x)∇NFN(ŪN)(s, x)ds

=
∫ t

0

1√
N

∑
x∈ZN

ϕ(x)
√

ŪN(s, x)dBx(s). (5.3)

Since Zϕ
N is a square integrable martingale with 〈Zϕ

N〉t =
∫ t
0

1
N

∑
x∈ZN

ϕ(x)2ŪN(s, x) ds,

Zϕ
N(t)2 −

∫ t

0

1

N

∑
x∈ZN

ϕ(x)2ŪN(s, x) ds (5.4)

is a martingale. Since the ŪN converge almost surely, it follows from ϕ ∈ C2
c that each

term on the right hand side of (5.3) converges as N → ∞ and so Zϕ
N(t) converges

almost surely to a local martingale Zϕ(t). Since Zϕ
N(t) is bounded in L2, the sequence

Zϕ
N(t) is uniformly integrable and so Zϕ is a (true) martingale (e.g. [13]). By expanding

ϕ in a Taylor series, we find that Zϕ(t) has the decomposition

Zϕ(t) =
∫

ϕ(x)u(t, x) dx−
∫

ϕ(x)u(0, x) dx

−
∫ t

0

∫
u(s, x)ϕ′′(x) dxds +

∫ t

0

∫
u2(s, x)ϕ′(x) dxds. (5.5)

Furthermore, since the martingale (5.4) converges almost surely to a local martingale,

the process Zϕ(t)2 −
∫ t
0

∫
ϕ(x)2

√
u(s, x) dxds is also a local martingale, which allows

us to conclude that 〈Zϕ〉t =
∫ t
0

∫
ϕ(x)2

√
u(s, x) dxds. ¿From this, we conclude that u

solves the martingale problem (5.2) and so we have the required existence. The reg-
ularity property of the solution constructed by the approximation procedure follows
from the bounds (4.5) and (4.6) in the proof of the tightness of ŪN . Finally, from
(3.20) and Fatou’s Lemma we get a similar bound for u(t, ·). The fact that ||u(t, ·||1 is
a Feller branching diffusion now follows from the argument used to proved the similar
result for ŨN(t, ·). It is well known that such diffusion processes die out in finite time.

6 On uniqueness

In the superprocess setting, the usual way to show uniqueness (in law) is to establish
the existence of an appropriate dual process, as developed, for example, in [8]. We
briefly sketch an attempt in this direction.

For v ∈ L1, φ ∈ C and π ∈ N, consider test functions of the form

Fφ,π(v) =
∫

Rπ
φ(x1, . . . , xπ)

π∏
i=1

v(xi)dxi, (6.1)
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and define for φ ∈ C2
c

Θ1
i (φ)(x1, . . . , xπ+1) =

∂φ(x1, . . . , xπ)

∂xi

δ(xi − xπ+1),

Θ2
i,j(φ)(x1, . . . , xπ−1) = φ(x1, . . . , xj−1, xi, xj+1 . . . xπ−1) j > i.

(6.2)

With these notations, and using the weak equation (5.1), one can check that

Fφ,π(ut) = Fφ,π(u0)

+
∫ t

0
F∆φ,π(us)ds +

∫ t

0

∫
Rπ

π∑
i=1

(
FΘ1

i (φ),π+1(us)− Fφ,π(us)
)
ds

+
∫ t

0

∫
Rπ

∑
1≤i,j≤π

j 6=i

(
FΘ2

ij(φ),π−1(us)− Fφ,π(us)
)
ds

+
∫ t

0

1
2
π(π + 1)Fφ,π(us)ds + a martingale.

(6.3)

This suggests defining a dual process (φt, πt) as follows: The process {πt, t ≥ 0} is
a birth and death process with birth rate λπt and death rate 1

2
πt(πt + 1). When πt

jumps up, φt jumps to Θ1
i (φt), i ∈ {1, . . . πt}. When πt jumps down, φt jumps to

Θ2
i,j(φt), i, j ∈ {1, . . . πt}, j > i. Between the jumps, φt solves the heat equation in

Rπt . Then, the ‘duality equation’, or Feyman-Kac formula, is

E
{
Fφ,π(ut)

}
= E

{
Fφt,πt(u0)e

∫ t

0

1
2

πs(πs+1)ds
}
. (6.4)

To make all this work, one has to show that each of the expressions in (6.4) is finite
when absolute values are taken inside the expectation. We have not been able to do
so and the uniqueness question for the Burgers superprocess thus remains open.

7 Appendix

PROOF OF LEMMA 3.1. Recall ([9] p. 567) that the characteristic function of
the continuous time simple random walk ξt on Z is

φ(ω, t) = E
{
eiωξt

}
= et(cos(ω)−1), ω ∈ [−π, π]. (7.1)

Using (7.1), it is easy to show that the Fourier transform ĜN of GN is

ĜN(t, x, ω) = eiωxeN2t(cos(ω/N)−1), ω ∈ [−Nπ,Nπ], x ∈ ZN . (7.2)

Proof of (3.4). Using the Fourier transform and the inequality −0.5x2 ≤ cos x−1 <
−0.2x2 for x ∈ [−π, π], we can show (3.4) for p = 2 using Plancherel’s formula
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||GN(t, x, .)||22 =
∫ Nπ

−Nπ
e2N2t(cos(ω/N)−1)dω ≤

∫ Nπ

−Nπ
e−0.4tω2

dω ≤ 3√
t
. (7.3)

For p = 1, the bound is of course 1, and for 1 < p < 2 it can be obtained by
interpolation between Lp spaces in the following form: If f ∈ Lp∩Lq, 1 ≤ p ≤ q ≤ ∞,

||f ||r ≤ ||f ||θp||f ||1−θ
q where p ≤ r ≤ q,

1

r
=

θ

p
+

1− θ

q
, θ =

1
r
− 1

q
1
p
− 1

q

. (7.4)

Proof of (3.5). Note that by symmetry and since GN is decreasing in |x|,

||G′
N(t, x, .)||1 = 2GN(t, 0, 0) = 2||GN(t/2, x, ·)||22 ≤ Ct−1/2. (7.5)

The bound for p ≥ 2 follows as in (7.8) below, but uses the Hausdorff-Young inequality
for p > 2, the case 1 < p < 2 coming via interpolation.

Proof of (3.6). We first establish the bound given in (3.6) for p = 2. Note that

||GN(t, x, ·)−GN(t + δ), z, ·)||2 (7.6)

≤ ||GN(t, x, ·)−GN(t, z, ·)||2 + ||GN(t, z, ·)−GN(t + δ), z, ·)||2.

We evaluate the time increments in (7.6) using Plancherel’s formula, the mean value
theorem and the Minkowski and Jensen inequalities as follows:[ ∫ Nπ

−Nπ

(
eN2(t+δ)(cos(λ/N−1) − eN2t(cos(λ/N)−1)

)2
dλ

]1/2

≤
{ ∫ Nπ

−Nπ

( ∫ t+δ

t
N2| cos(λ/N)− 1|eN2u(cos(λ/N)−1)du

)2

dλ
}1/2

≤
∫ t+δ

t

[ ∫ Nπ

0
λ4e−0.4uλ2

dλ
]1/2

du

<
∫ t+δ

t
u−5/4

[ ∫ ∞

0
λ4e−0.4λ2

dλ
]1/2

du (7.7)

≤ Cδ
[ ∫ t+δ

t
u−

5
4α

1

δ
du

]α

≤ Cδ%t−
1
4
−%.

For the spatial increment we use the inequality |1 − eiλ(x−z)|2 ≤ 4|λ|ε|x − z|ε for
0 < ε < 1 to see that

||GN(t, x, ·)−GN(t, y, ·)||2≤
[ ∫ Nπ

−Nπ

∣∣∣eiλx − eiλy
∣∣∣2e2N2t(cos(λ/N−1)dλ

]1/2

≤C|y − x|2%t−
4%+1

4

[ ∫ ∞

0
λ4%e−0.4λ2

dλ
]1/2

(7.8)

≤C|y − x|2%t−
1
4
−%.
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This finishes the proof for p = 2. For p = 1, we have by the Cauchy problem for GN

|| ∂
∂t

GN(t, x, ·)||1 = ||∆NGN(t, x, ·)||1

=
∣∣∣∣∣∣ 1

N

∑
z∈ZN

(
GN(t/2, x + 1

N
, z)−GN(t/2, x, z)

)
×

(
GN(t/2, z − 1, ·)−GN(t/2, z, ·)

)∣∣∣∣∣∣
1

≤ ||G′(t/2, x, ·)||21.

This estimate, (7.5), the mean value theorem and the last lines of (7.7) complete the
proof. For the spatial increments (and p = 1), we have, by (7.5), that

||GN(s, x, ·)−GN(s, y, ·)||1 ≤ |y − x|||G′(s, x, ·)||1 ≤ C|y − x|s−1/2.

However, we also have ||GN(s, x, ·)−GN(s, y, ·)||1 ≤ 2, and so for 0 < % < 1,

||GN(s, x, ·)−GN(s, y, ·)||1 ≤ C|y − x|2%s−%.

This establishes (3.6) for p = 1. The case 1 < p < 2 follows by interpolation.

Proof of (3.7). For p, α and % as required, and 0 < s < t, we have, by (3.4) and
(3.6), ∫ t

0
||(t− u)α−1GN(t− u, ·, x)− (s− u)α−1GN(s− u, ·, y)1(u≤s)||pdu

≤
∫ s

0

(
(t− u)α−1 − (s− u)α−1

)
||GN(t− u, ·, x)||pdu

+
∫ s

0
(s− u)(α−1)||GN(t− u, ·, x)−GN(s− u, ·, y)||pdu

+
∫ t

s
(t− u)(α−1)||GN(t, ·, x)||pdu

≤ C
∫ s

0

(
(t− u)α−1 − (s− u)α−1

)
(t− u)−

1
2
(1− 1

p
)du

+ C
(
|y − x|2% + |t− s|%

) ∫ s

0
(s− u)α−1− 1

2
−%+ 1

2p du

+ C(t− s)α− 1
2
(1− 1

p
).

Note that for σ < 0, 0 < % < 1, there is a positive constant C such that tσ − sσ ≤
C(t− s)%sσ−%. Using this and (t− u)σ < (s− u)σ for σ < 0 we bound the first term
in the last inequality above, the other two are trivial. 2

Lemma 7.1 If f, g ∈ l2N then

1

N

∑
x∈ZN

g(x)f(x)∇Nf(x) ≤ ||∇Nf ||22 +
1

8
||f ||22||g||42. (7.9)

23



PROOF. In the sequel we will need a discrete version of Sobolev inequality: For any
f ∈ l2N , it holds that

||f ||2∞ ≤ ||∇Nf ||2||f ||2. (7.10)

To show this inequality note that, for any N ∈ N and f ∈ l2N ,

f 2(x) =
1

2N

 x−1∑
z∈ZN

z=−∞

∇+
Nf 2(x)−

∞∑
z∈ZN

z=x+1

∇−
Nf 2(x)

.

However,

∇+
Nf 2(x) = N

(
f 2(x + 1

N
)− f 2(x)

)
= Nf(x)

[
f(x + 1

N
)− f(x)

]
+ Nf(x + 1

N
)
[
f(x + 1

N
)− f(x)

]
,

with a similar expression for ∇−
N . The conclusion then follows from the Cauchy–

Schwartz inequality.

To complete the proof of Lemma 7.1, we can assume ||f ||22 > 0. By Hölder’s inequality

1

N

∑
x∈ZN

g(x)f(x)∇Nf(x) ≤ ||f ||∞||∇Nf ||2||g||2

≤ 1

2
||∇Nf ||2

[ ||f ||2∞
||f ||2

+ ||f ||2||g||22
]

≤ 1

2
||∇Nf ||22 + ||∇Nf ||2

||f ||2||g||22
2

≤ ||∇Nf ||22 +
1

8
||f ||22||g||42,

by (7.10) and exploiting the elementary inequality ab ≤ 1/2(εa2 + 1/εb2) for ε > 0.2
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