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Abstract: We discuss and review recent developments in the area of applied
algebraic topology, such as persistent homology and barcodes. In particular, we
discuss how these are related to understanding more about manifold learning
from random point cloud data, the algebraic structure of simplicial complexes
determined by random vertices and, in most detail, the algebraic topology of
the excursion sets of random fields.

1. Introduction

Over the last few years there has been a very interesting and rather exciting devel-
opment in what is reputedly one of the most esoteric areas of pure mathematics:
algebraic topology. Some of the practitioners of this subject are, to a considerable
extent, looking out beyond the inner beauty of their subject and seeing if they can
apply it to problems in the ‘real world’, that is to problems outside the realm of
pure mathematics. As a result ‘applied algebraic topology’ is no longer an oxy-
moron, and although it is true that at this point sophisticated applications are still
few and far between, there is a growing feeling that the gap between theory and
practice is closing. We shall give more specific references below, but a very lively
discussion of this trend can be found in Rob Ghrist’s review [23], book in progress
[24] and website on a project on sensor topology for minimal planning [25]. Gunnar
Carlsson’s webpage [11], which describes a large Stanford TDA (topological data
analyis) project, and a DARPA webpage [16] describing a broad based project,
also help explain the reasons why so many people have been so attracted to this
direction.

These ideas are not totally new. For example, the brain imaging community has
been using random field modelling and topological properties of these fields for
quite some time. For example, people like Karl Friston, a leading figure in medical
imaging, have been talking about the notion of ‘topological inference’ for a while (cf.
the website [22]) based in a large part on the work of the late Keith Worsley. What
is new, however, is the coordinated attack of a goodly number of high powered
mathematicians on applications.

The aim of the current paper is to describe some of the new ideas that have
arisen in applied algebraic topology and, given the interests of the authors, exploit
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2 Adler, Bobrowski, Borman, Subag, Weinberger

some of them in the setting of random fields, i.e. of random processes defined over
spaces of dimension greater than one. There are new results here, albeit without
proofs. However, this paper is mainly review and exposition, with a strong bias in
a particular direction, but written in a language which we hope will be accessible
to the natural readers of this Festchrift who may (as did we until recently) find the
language of even applied topologists somewhat unfamiliar. In the final analysis, if
Larry will be happy with the final product, then we shall be happy as well.

The paper starts in Section 2 with a discussion of one of the central notions of ap-
plied algebraic topology, that of persistent homology and its graphical depiction via
barcodes. This is done via examples rather than formal definitions, so it should be
possible to understand the notion of persistent homology without actually knowing
what a homology group is. (For those who do know about homology, more precise
definitions of persistent homology and barcodes are given in the appendix of Sec-
tion 6.) Also in Section 2 we discuss simplicial complexes as they arise in manifold
learning and also discuss the topology of random field excursion sets.

Section 3 has a brief discussion of persistence diagrams of excursion sets, based
on simulations. (These have actually already been used elsewhere for the analysis of
brain imaging data, see [15].) These data raise numerous challenges for statisticians
and probabilists.

Section 4 introduces what seems at first to be a rather abstruse structure of ‘Euler
integration’, but it is very quickly shown that not only is this a useful concept, but
the key to solving a number of quite varied problems. This is the main section of
the paper.

A very brief Section 5 points out that we should have also had more to say
about random simplicial complexes, but didn’t, and so points you to appropriate
references. A brief technical appendix completes the paper in Section 6.

2. Persistent homology and barcodes

In this section we are going to give a very brief and sketchy introduction to some
basic notions of algebraic topology. A concise, yet very clear introduction to the
topics that concern us can be found in [9, 24], while [26, 37] are good examples of a
thorough coverage of homology theory. Recent excellent and quite different reviews
by Carlsson [10, 13], Edelsbrunner and Harer [20], and Ghrist [1, 17, 18, 23] give a
broad exposition of the basics of persistent homology.

Algebraic topology focuses on studying topology by assigning algebraic, group
theoretic, structures to topological spaces X. Thus, homology, cohomology and ho-
motopy groups can be used to classify objects into classes of ‘similar shape’. In this
paper we shall focus on homology. IfX is of dimensionN , then it hasN+1 homology
groups, each one of which is an abelian group. (We shall later take the coefficients
from Z2, thereby making the groups vector spaces.) The zero-th homology H0(X)
is generated by elements that represent connected components of X. For k ≥ 1 the
k-th homology group Hk(X) is generated by elements representing k-dimensional
‘loops’ in X. The rank of Hk(X), denoted by βk, is called the k-th Betti number.
For X compact and k ≥ 1, βk, measures the number of k-dimensional holes in X,
while β0 counts the number of connected components. The Euler characteristic, a
central topological quantity and homotopy invariant, is then

χ(X) =
N∑
k=0

(−1)kβk.(2.1)
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Persistent Homology for Random Fields and Complexes 3

To explain the idea of persistent homology, we shall work with two examples.
The first is based on what is known as the ‘Morse filtration’ of excursion sets, the
second on complexes formed from point sets.

2.1. Barcodes of excursion sets

Suppose that M is a nice space, that f : M → R is smooth, and consider the
excursion, or super-level, sets

Au
∆= {p ∈M : f(p) ∈ [u,∞)} ≡ f−1([u,∞)).(2.2)

Note that if u ≥ v then Au ⊆ Av. Going from u to v, components of Au may merge
and new components may be born and possibly later merge with one another or with
the components of Au. Similarly, the topology of these components may change, as
holes and other structures form and disappear. Following the topology of these sets,
as a function of u, by following their homology, is an example of persistent homology.
The term ‘persistence’ comes from the fact that as the level u changes there is no
change in homology until reaching a level u which is a critical point of f ; i.e. the
topology of the excursion sets remains static, or ‘persists’, between the heights of
critical points. This, of course, is the basic observation of Morse Theory, which links
critical points to homology. However, the persistence of persistent homology goes
further. For example, when two components merge, one treats the first of these to
have appeared as if it is continuing its existence beyond the merge level.

A useful way to describe persistent homology is via the notion of barcodes.
Assuming that dim(M) = N , we also have, from the smoothness of f , that, if Au
is non-empty, then dim(Au) will typically also be N . A barcode for the excursion
sets of f is then a collection of N + 1 graphs, one for each collection of homology
groups of common order. A bar in the k-th graph, starting at u1 and ending at u2

(u1 ≥ u2) indicates the existence of a generator of Hk(Au) that appeared at level
u1 and disappeared at level u2. An example is given in Figure 2.1, in which the
function f is actually the realisation of a smooth random field on the unit square,
an example to which we shall return later.

Figure 2.2 is even more impressive, since it shows a three dimensional example.
Note that, as opposed to the 2-dimensional case, it is almost impossible to say
anything about topology just by looking at the boxes with the excursion sets at
the top of the figure, but there is a lot of immediate visual information available in
the barcodes. This phenomenon becomes even more marked as the dimension N of
the parameter space increases. While it may be impossible to imagine what a five
dimensional excursion set looks like, it is easy to look at a barcode with six sets of
bars for the six persistent homologies.

2.2. Point sets and manifold learning

Consider the following situation. Let X be an unknown subset of Rd with finite
Lebesgue measure and let X1, . . . , Xn be n independent random samples uniformly
distributed on X. We would like to study the homology of X using only these
random points. When X is a manifold, this is typically referred to as manifold
learning. In many cases we can find an ε for which the union of balls

U =
n⋃
i=1

Bε(Xi)(2.3)

imsart-coll ver. 2009/08/13 file: larry.tex date: March 24, 2010



4 Adler, Bobrowski, Borman, Subag, Weinberger

Fig 2.1. Barcodes for the excursion sets of a function on [0, 1]2. The top seven boxes show the
surfaces generated by a 2-dimensional random field above excursion sets Au for different levels
u. To determine the level for each figure, follow the vertical line down to the scale at the bottom
of the barcode. As the vertical lines pass through the boxes labelled H0 and H1, the number of
intersections with bars in the H0 (H1) box gives the number of connected components (resp. holes)
in Au. Thus, at u ∼ 1.9, Au has 4 connected components but no holes, while at u ∼ −1.2, Au

has only 1 connected component, but 9 holes. The horizontal lengths of the bars indicate how
long the different topological structures (generators of the homology groups) persist. Computation
of the barcodes was carried out in Matlab using Plex (Persistent Homology Computations) from
Stanford [12].

is homotopy equivalent to X (and hence has the same homology). However, we do
not know, a priori, what is the correct choice of ε. An example is given in Figure
2.3, in which X is a two-dimensional annulus. If ε is chosen to be too small then
U is homotopy equivalent to the union of n distinct points (and hence contains
no information on X). On the other hand, choosing ε to be too big gives us a U
that is a large, contractible blob, which again tells us nothing about X. But, as
with Goldilock’s porridge, choosing ε ‘just right’, recovers an object topologically
equivalent to the annulus. Persistent homology overcomes this sensitivity to the
choice of ε by considering a range of possible values of ε, much as we did with the
levels of excursion sets in the previous example, but with the aim of learning about
the topology ofX from the barcodes. The key assumption is that homology elements
that ‘live longer’ (or, persist) are more likely to represent homology elements of X,
whereas the shorter ones are just ‘noise’.

To describe this in a little more detail we need the notion of simplicial complexes.
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Persistent Homology for Random Fields and Complexes 5

Fig 2.2. Barcodes for the excursion sets of a 3-dimensional random field. The barcode diagram
is to be read as for Figure 2.1, with two differences: The top 7 boxes now display the excursion
sets themselves and the values of the field are colour coded. Furthermore, there are now three
homology-groups/barcode-boxes, representing connected components, handles, and holes.

Fig 2.3. Trying to capture the homology of an annulus (where β0 = 1, β1 = 1) from a union
of balls of various radii around a random sample of points from the annulus. A good choice of
radius recovers the correct homology in the first case. If the radius chosen is too small, the union
of balls has the same homology as n distinct points (β0 = n, β1 = 0). If the radius chosen is too
big, the union is contractible (β0 = 1, β1 = 0).

2.3. Simplicial complexes

We are not going to give a definition of simplicial complexes here, but rather shall
describe two classic ways to construct abstract simplicial complexes from a given
set of points in a metric space.

Definition 2.1 (The Čech Complex). Let P = {x1, x2, . . .} be a collection of points
in a metric space X. Construct an abstract simplicial complex C(P, ε) in the fol-
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6 Adler, Bobrowski, Borman, Subag, Weinberger

lowing way:

1. The 0-simplices are the points in P,
2. An n-simplex [xi0 , . . . , xin ] is in C(P, ε) if

⋂n
k=0Bε(xik) 6= ∅,

where Bε(x) is the ball of radius ε around x. The complex C(P, ε) is called the Čech
complex attached to P and ε.

Definition 2.2 (The Vietoris-Rips Complex). Let P = {x1, x2, . . .} a collection of
points in a metric space X. Construct an abstract simplicial complex R(P, ε) in the
following way:

1. The 0-simplices are the points in P.
2. An n-simplex [xi0 , . . . , xin ] is in R(P, ε) if Bε(xik) ∩ Bε(xim) 6= ∅ for every

0 ≤ k < m ≤ n.

The complex R(P, ε) is called the Rips complex attached to P and ε.

From these definitions it is obvious that C(P, ε) ⊂ R(P, ε). In addition, it is
proved in [17] that R(P, ε′) ⊂ C(P, ε) for ε/ε′ ≥

√
2d/(d+ 1). In other words, a

Čech complex can be ‘approximated’ by Rips complexes. This fact is used in com-
putational applications, since working with Rips complexes is much more efficient
than with Čech complexes.

There are occasions when Rips and Čech complexes coincide, as is the case when
X is Euclidean but the metric is the L∞ rather than the more standard L2 norm.
In many statistical applications the choice of metric on X may be dictated by
optimality considerations rather than ‘natural’ geometry.

The main importance of the Čech complex and its relevance to homology theory,
is given in the next theorem.

Theorem 2.3 (The Nerve Theorem). Suppose that the intersections
⋂
x∈P′ Bε(x)

are either empty or contractible for any subset P ′ of P. Then the Čech complex
C(P, ε) is homotopy equivalent to

⋃
x∈P Bε(x). In particular, if X is a finite di-

mensional normed linear space, or a compact Riemannian manifold with convexity
radius greater than ε, and if {Bε(x)}x∈P is a cover of the space X, then C(P, ε) is
homotopy equivalent to X.

The main consequence of the Nerve Theorem is that in order to study the ho-
mology of the topological space

⋃
x∈P Bε(x), we can study the homology of the

combinatorial space C(P, ε). This fact can be useful in proving theoretical results,
but its main contribution is to computational applications.

With these definitions behind us, Figure 2.4 gives a nice example of how barcodes
describe the topology of an annulus (β0 = 1, β1 = 1, β2 = 0) in R2, when 17 points
are sampled from it and Rips complexes are computed for a range of ε.

3. Random field simulations

In this section we want to consider the persistent homology of random field excur-
sion sets. In particular, we would like to understand something about the distribu-
tional properties of their barcodes.

The random fields behind the barcodes of Figures 2.1 and 2.2 were taken to be
mean zero, Gaussian, over the parameter set [0, 1]2 and with covariance function
R(p) = exp(−α‖p‖2). This is a stationary, isotropic, and infinitely differentiable
random field, and the starting test case for all theories. We took α = 100.
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Persistent Homology for Random Fields and Complexes 7

Fig 2.4. The barcode of a Rips complex, taken from [23]. The points were sampled from an annulus
in R2. We see that there is a single H0 bar that persists forever. This bar represents the single
connected component of the annulus. In H1 we see a couple of dominant bars indicating that the
sample space contains holes. The longest bar actually represents the real hole of the annulus. In
H2 there is nothing significant and indeed β2 = 0 in this case.

We ran 10,000 simulations of this field, calculating 10,000 barcodes. In order to
represent the data in a reasonable fashion, we used persistence diagrams rather than
barcodes. To form a persistence diagram from the bars in Hk, one simply replaces
each bar by a pair (x, y), where x is the level at which the bar begins and y the
level at which it ends. Thus x > y and the pair (x, y) lies in a half plane. In Figure
3.1 the corresponding persistence diagrams for the complete simulation data are
shown for H0 and H1.

Fig 3.1. Persistence diagrams for 10,000 simulations of an isotropic random field on the unit
square. Note that the diagrams for H0 and H1 seem quite different.

Additional information on the barcodes is given in Figure 3.2. What is shown
there are the (marginal) distributions of the start and end points of the barcodes
for H0 and H1 from the same simulation. A simple application of Morse theory, or,
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8 Adler, Bobrowski, Borman, Subag, Weinberger

in this simple two dimensional setting, a little thought, leads to the realisation that
the start points of the H0 bars are all heights of local maxima of the field, while
the end points of the H1 bars correspond to local minima. These distributions have
been well studied (although their precise form is not known) in the general theory of
Gaussian random fields. The remaining start and end points correspond to different
types of saddle points of the random field. However, what differentiates between
the end point of a H0 bar and the start point of a H1 bar is global geometry and
is not determined by the local behaviour of the field.

Fig 3.2. Empirical distributions of start and end points of bars for the Gaussian field of Figure
3.1.

It would be interesting to know more about the real distributions lying behind
Figures 3.1 and 3.2, but at this point we know very little. An interesting aspect is
the asymmetries between the start points of the H0 bars (local maxima) and the
end points of the H1 bars (local minima, as well as between the two sets of saddle
points. We imagine that this is due to boundary effects and would disappear if the
simulation had been carried out on a closed manifold.

There are some things that we do know, however, and we turn to them next.
Firstly, however, we need to make a small digression.

4. Euler Integration

Before we introduce the Euler integral, we need to define the Euler characteristic for
noncompact spaces. For a compact space X, we already defined the Euler charac-
teristic χ(X) in (2.1) as an alternating sum of Betti numbers; viz. as an alternating
sum of ranks of the homology groups Hk(X).

In this setting the Euler characteristic is a homotopy invariant and is additive
in the sense that

(4.1) χ(A ∪B) = χ(A) + χ(B)− χ(A ∩B).
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Persistent Homology for Random Fields and Complexes 9

In extending the definition of the Euler characteristic to noncompact spaces,
if one uses the definition of the Euler characteristic as the alternating sum of
rankHk(X), then additivity is lost (consider [0, 1] = [0, 1) ∪ {1}). Therefore the
definition of the Euler characteristic we shall use for noncompact spaces is

χ(X) =
∑
k

(−1)k rankH lf
k (X) =

∑
k

(−1)k(# of open k-simplices in X),

where H lf
k (X) is called the locally finite homology (see [27, Chapter 3]). Since

H lf
k (X) = Hk(X) for compact spaces, this extends the definition of the Euler char-

acteristic to noncompact spaces such that additivity is preserved, but we lose
homotopy invariance, although it is still a homeomorphism invariant. This Euler
characteristic can also be computed by decomposing the space into a union of open
k-simplices and points. For example, χ((0, 1)) = −1, χ([0, 1)) = 0 and χ([0, 1]) = 1.

4.1. The Euler Integral

Since the Euler characteristic is an additive operator on sets (cf. (4.1)), it is tempt-
ing to consider χ as a measure and integrate with respect to it. The main problem
in doing so is that χ is only finitely additive.

At first (cf. [38]), integration with respect to the Euler characteristic was defined
for a small set of functions called constructible functions defined by

CF (X) =

{
h(x) =

n∑
k=1

ak1Ak
(x)

∣∣∣∣∣ n ∈ N, ak ∈ Z, Ak is tame

}
,

where ‘tame’ means having a finite Euler characteristic. For this set of functions
we can define the Euler integral similarly to the Lebesgue integral. Let h(x) =∑n
k=1 ak1Ak

(x) and define ∫
X

hdχ ,
n∑
k=1

akχ(Ak).

This integral has many nice properties, similarly to those of the Lebesgue inte-
gral, such as linearity and a version of the Fubini theorem (cf. [24, 38]). However,
due to the lack of countable additivity one cannot easily continue from here by
approximation to integrate more general functions.

Nevertheless, in [3] two possible extensions were suggested for the Euler integral
of real valued functions. We shall not go into details of the constructions here, but
rather use one of the properties of these extensions to define what in [3] was called
an upper Euler integral and which we, for simplicity, shall call an Euler integral.
Thus, we define the Euler integral by∫

X

f dχ
∆=
∫ ∞
u=0

[χ(f > u)− χ(f ≤ −u)] du,(4.2)

where χ(f > u) , χ
(
f−1(u,∞)

)
and χ(f ≤ −u) , χ

(
f−1[−u,∞)

)
. These inte-

grals are defined for what are known as ‘tame’ functions. See [3] for details.
Unfortunately, these extensions of the Euler integral have many flaws, of which

the most prominent one is the lack of additivity. For example, a simple computation
shows that for X = [0, 1]∫

X

x dχ+
∫
X

(1− x) dχ = 1 + 1 = 2 6= 1 =
∫
X

1 dχ.
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10 Adler, Bobrowski, Borman, Subag, Weinberger

Nevertheless, these integrals still have interesting properties and some intereting
applications. Here is one.

4.2. An application of the Euler integral

This application was suggested in [4]. Suppose that an unknown number of targets
are located in a space X and each target α is represented by its support Uα ⊂ X.
Suppose also that the space X is covered with sensors, each reporting only the
number of targets it can sense, but with no ability to distinguish between targets.
Let h : X → Z be the sensor field, i.e.

h(x) = # {targets activating the sensor located at x} .

The following theorem states how to combine the readings from all the sensors and
get the exact number of targets.

Theorem 4.1 (Baryshnikov and Ghrist, [4]). If all the target supports Uα satisfy
χ(Uα) = γ for some γ 6= 0, then

# {targets} =
1
γ

∫
X

hdχ.

Note that we do not need to assume anything about the targets other than they
all have the same nonzero Euler characteristic . For example, we need not assume
that they are all convex or even have the same number of connected components.
On the other hand, the theorem assumes an ideal sensor field, in the sense that the
entire (generally continuous) space X is covered with sensors which register only
what happens at the point at which they are placed. In [3] more realizable models
using the upper and lower Euler integrals are discussed.

Assume now that the readings from the sensors are contaminated by a Gaussian
(or Gaussian related) noise f(x). Under these conditions it can be proved that∫

X

(h+ f) dχ =
∫
X

h dχ+
∫
X

f dχ.

Denoting s =
∫
X
h dχ (deterministic signal), n =

∫
X
f dχ (noise) and y =

∫
X

(h +
f) dχ (measurement), this is a classic signal plus noise problem (i.e. y = s + n).
In particular, in order to estimate s from y, it would be nice, in view of Theorem
4.1, to be able to compute some distributional properties of the Euler integral of a
Gaussian random field. We shall limit ourselves to computing the expectation and
shall turn to this after a few words on the Gaussian kinematic formula.

4.3. The Gaussian kinematic formula

Suppose that M is an N -dimensional, C2, Whitney stratified manifold satisfying
some mild side conditions (cf. [2] for details) and D a similarly nice stratified sub-
manifold of Rk. Let f = (f1, . . . , fk) : M → Rk be a vector valued random process,
the components of which are independent, identically distributed, real valued, C2,
centered, unit variance, Gaussian processes. Using f , define a Riemannian metric
on M by setting

gx(X,Y ) ∆= E{(Xf ix) (Y f ix)},(4.3)
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Persistent Homology for Random Fields and Complexes 11

for any i and for X,Y ∈ TxM , the tangent space to M at x ∈ M , and use this to
define the Lipschitz-Killing curvatures, Lj , j = 0, . . . , N on M . For example, if M
is a manifold without boundary, then these are given by

(4.4) Lj(M) =
1

(2π)(N−j)/2((N − j)/2)!

∫
M

TrM (−R)(N−j)/2 Volg,

when N − j ≥ 0 is even, and 0 otherwise. Here Volg is the volume form of the
Riemannian manifold (M, g), R is the curvature tensor and TrM the trace operator
on the algebra of double forms on M . For simple Euclidean spaces, with various
orderings and normalisations, the Lipschitz-Killing curvatures are also known as
Quermassintegrales, Minkowski or Steiner functionals, integral curvatures, and in-
trinsic volumes. Note that LN (M) ≡ Volg(M) is the Riemannian volume of M and
L0(M) ≡ χ(M) is its Euler characteristic.

The Gaussian kinematic formula (hereafter GKF) was due originally to Taylor
in [35] (but for the form below see [2, 36]) and states that

E
{
Li
(
M ∩ f−1(D)

)}
=

N−i∑
j=0

[
i+ j
j

]
(2π)−j/2Li+j(M)Mγ

j (D).(4.5)

The combinatorial coefficients here are the standard ‘flag coefficients’ of integral
geometry, given by [

n
j

]
=
(
n

j

)
ωn

ωn−j ωj
,

where ωn is the volume of the unit ball in Rn. TheMγ
j (D), known as the Gaussian

Minkowski functionals of D, are determined via the tube expansion

P {f(x) ∈ {y : d(y,D) ≤ ρ}} =
∞∑
j=0

ρj

j!
Mγ

j (D),(4.6)

where x is any point in M and d is the usual Euclidean distance from a point to a
set.

One could devote a book to this formula and, indeed, such a book exists. So we
shall refer you to [2] for all needed technical details.

We note only one pertinent fact, for immediate use. Taking j = 0 in (4.5) gives the
expected Euler characteristic of excursion sets as a simple, closed form expression
that can be readily calculated in many interesting cases. Again, see [2] for details.

4.4. The Euler integral of a Gaussian random field

Returning to the signal plus noise problem of Section 4.2, we can formulate the first
step towards its solution.

Let M be a nice, tame, space. (The definition of ‘tame’ can be found in [2].) Let
f be a random field. Here is a striking result, due to Bobrowski and Borman [6]:

Theorem 4.2. Let M be an N -dimensional tame stratified space and let f : M →
Rk be a k-dimensional Gaussian random field satisfying the GKF conditions. Let
G : Rk → R be piecewise C2 and let g = G ◦ f . Setting Du = G−1(−∞, u] and
assuming that

∣∣∫
RMj(Du)du

∣∣ <∞, we have

(4.7) E
{∫

M

g dχ

}
= χ(M)E {g} −

N∑
j=1

(2π)−j/2Lj(M)
∫

R
Mγ

j (Du)du,

imsart-coll ver. 2009/08/13 file: larry.tex date: March 24, 2010



12 Adler, Bobrowski, Borman, Subag, Weinberger

where E {g} := E {g(t)}. (g(t) has constant mean).

While, on the one hand, this is not a difficult result to prove, given the GKF and
(4.2), it was completely unforseen until discovered and has a number of interesting
and potentially deep implications.

The main difficulty in applying Theorem 4.2 lies in computing the Minkowski
functionals Mγ

j (Du). A simple example is given in the following case:

Theorem 4.3. Let M be an N -dimensional tame stratified space and let f : M → R
be a real valued Gaussian random field satisfying the GKF conditions. Let G : R→
R be piecewise C2 and let g = G ◦ f . Then

E
{∫

M

g dχ

}
= χ(M)E {g}+

N∑
j=1

(−1)jLj(M)

〈
Hj−1, (sgn(G′))jG′

〉
(2π)j/2

.

In the theorem, for n ≥ 0 the nth Hermite polynomial Hn is defined by

Hn(x) = (−1)nϕ−1(x)
dn

dxn
ϕ(x),

where ϕ is the standard Gaussian density, e−x
2/2/
√

2π. The inner product is given
by

(4.8) 〈f, g〉 =
∫

R
f(x)g(x)ϕ(x)dx,

and we use the convention, required below, that

H−1(x) = ϕ−1(x)
∫ ∞
x

ϕ(u)du.

In the case that the function G is strictly monotone, we have an even simpler
form.

Corollary 4.4. Let f be as in Theorem 4.3 and G be a strictly increasing function,
then

E
{∫

M

g dχ

}
=

N∑
j=0

(−1)jLj(M)
〈Hj , G〉
(2π)j/2

.

If G is strictly decreasing then,

E
{∫

M

g dχ

}
=

N∑
j=0

Lj(M)
〈Hj , G〉
(2π)j/2

.

Finally, taking G to be the identity function yields

Corollary 4.5. Let f be as in Theorem 4.3, then

E
{∫

M

f dχ

}
= −L1(M)√

2π
.

Further details and further examples, including results for χ2 and F random
fields, can be found in [6].
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4.5. Persistent homology of Gaussian excursion sets

We now return to excursion sets, which would seem to have been forgotten in all the
discussion on Euler integrals. It turns out that this was not the case, but that Euler
integrals and Theorem 4.3 contain a lot of information on the persistent homology
of Gaussian excursion sets.

First, however, some notation and a definition: Suppose we have a barcode, which
we shall denote by B. Denote the individual bars in B by b, their lengths by `(b),
and the degree of the homology group to which belongs the generator that they
represent by µ(b).

Definition 4.6. The Euler characteristic of a barcode B with no bars of infinite
length is

χ(B) ∆=
∑
b∈B

(−1)µ(b)`(b).

It turns out that this topological quantity can actually be written in terms of
Euler integrals. For convenience, and adopting the prejudices of topologists rather
than probabilists and statisticians, we shall consider the barcodes of incursion rather
than excursion sets, or, equivalently, sub-level sets rather than super-level sets. That
is, we replace excursion sets of (2.2) by

Ãu
∆= {p ∈M : f(p) ∈ (−∞, u]} ≡ f−1((−∞, u]).(4.9)

Then [6] showed that, if B(f, u) denotes the barcode of Ãu for tame f ,

χ(B(f, fmax)) = fmaxχ(M)−
∫
M

f dχ.(4.10)

Combining this with Theorem 4.2 yields

Theorem 4.7. Let f : M → Rk be a Gaussian random field satisfying the GKF
conditions, G ∈ C2(Rk,R) and g = G ◦ f . Then

E {χ(B(g, gmax))} = χ(M) (E {gmax} − E {g}) +
N∑
j=1

(2π)−j/2Lj(M)
∫

R
Mj(Du)du.

If f is real, then

E {χ(B(f, a))} = χ(M) (ϕ(a) + aΦ(a)) + ϕ(a)
N∑
j=1

(2π)−j/2Lj(M)Hj−2(−a),

for any a.

The way we have presented this result, as a ‘natural’ consequence of a reasonably
‘straightforward’ Theorem 4.2, substantially underplays its importance and novelty.
It has a number of interesting corollaries, for which we send you to the original
paper [6]. But its main contribution lies in its very existence, connecting, as it does,
between probabilistic objects and their homological structure.

As one of our colleagues/teachers recently stated: “I can think of no two top-
ics in mathematics further away from one another than probability and algebraic
topology. There is probably no way to connect them.” Yet here, in Theorem 4.7, is
an elegant connection, one of the first of its kind.
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14 Adler, Bobrowski, Borman, Subag, Weinberger

5. Random Geometric Complexes

In Sections 2.2 and 2.3 we motivated the idea of persistent homology and barcodes
with examples from manifold learning and random simplicial complexes. Despite
this, we shall not go into detail, but shall rather describe some general issues and
give you a few useful references to this area, which is also currently undergoing
rapid development.

5.1. Manifold learning

We already mentioned manifold learning briefly in Section 2.2 via the example of
trying to identify an annulus, or at least its homology, from a simplicial complex
built over the sample points. The subject of manifold learning goes, obviously, well
beyond such an example, and examples of algorithms for ‘estimating’ an underlying
manifold from a finite sample abound in the statistics and computer science liter-
atures. Very few of them, however, take an algebraic point of view, which is what
we have stressed in this paper.

One contribution in the spirit of this paper is [30] by Niyogi, Smale, and Wein-
berger, who studied the problem of estimating smooth manifolds from finite sam-
ples. They showed that in sampling from a high dimensional manifold, if the sam-
pling is dense enough then, with high probability, the set (2.3) deformation retracts
to the manifold and so has the same homology. This implies that long persistence
intervals, once one has enough sample points, are very likely to correctly compute
the homology of a submanifold.

Of course, one of the most important issues in dealing with data is noise. In
the setting of manifold learning this translates to the sample points possibly not
coming from the submanifold that theoretically models the phenomenon because
of experimental, measurement, or other error. In [31] the same authors treat this
issue, as does [14] from a different and enlightening point of view.

In a complementary but related direction [8, 9] apply persistence techniques to
the nonparametric study of functions on a given manifold.

5.2. Random complexes

We now return to the Čech and Rips complexes of Section 2.3.
To get a feeling for the phenomena that occur as we approximate a manifold by

the union of balls, it is perhaps enlightening to consider the situation, for a fixed ε,
of the evolution of the homology of the Čech complexes as the number of points, n,
grows. The points themselves we assume are chosen uniformly, at random, on the
manifold.

For n small, the balls do not intersect, but as n grows intersections begin to occur
and small finite graphs appear. Assuming that ε is sufficiently small that all ε-balls
have about the same volume, it is easy to compute the expected number of times a
particular graph arises. This leads to complicated integrals, but investigating them
leads to the belief that k-homology (for a Čech complex) is most likely to occur
as a result of the occurrence of boundaries of (k + 1)-simplices. That is, it requires
k + 1 points to be close to each other (at scale ε) but not to fill in. Aside from a
constant factor, the probability that this happens should be (εd)k

(
n
k+1

)
. For this

probability to be non-trivial, one requires that n is O(1/εdk/(k+1)). In other words,
it is for n of this size that one begins to see interesting k-homology.
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As n continues to grow, there will be a point where the data covers a nontrivial
percentage of the volume, a point at which phenomena related to percolation occur.
Finally, there is a reversal when the ε-balls fill almost all of the manifold, all extra
homology dies, and ultimately we obtain the correct calculation of homology.

To get a feeling for the end game, it is worthwhile to compute the expected
Euler characteristic of the union of n ε-balls in, say a flat torus. For simplicity, as
we are only giving a heuristic, let’s avoid the complications of Euclidean metrics
and consider an L∞ metric on the torus. In that case, a straightforward inclusion
exclusion argument (see [32] for this in a Poisson model in Euclidean space and
[29] for the use of kinematic formulae to obtain the relevant formulae in the case
of genuine round balls), together with a generating function argument, give the
formula for E(χn,ε,d), where χn,ε,d is the Euler characteristic of the union of n
ε-balls and d is the dimension of the torus, as follows:

Let τ = (2ε)d. Then

E {χn,ε,d} =

{
n(1− (τ)n−1) d = 1
d
dτ (τE {χn,τ,d−1}) d ≥ 2.

One thus obtains that the Euler characteristic is approximately 0 (for the last time
and so implying coverage) when n is around (1/τ) log(1/τ) plus lower order terms.
See [21] for more details. Interestingly, it follows from the work of [33] that the
phase transition for the giant component to form, in the sense of random graph
theory, is (asymptotically) at 2−d times this number. That is, the computation of
components seems to be correct. It also seems extremely likely that there are phase
transitions at other multiples of this fundamental scale where the other homology
groups are correctly computed.

Many more details of the phenomena for small n and the percolation range, the
relevant central limit theorems for homology and some valuable information about
persistence intervals in Rips and Čech situations can be found in recent papers of
Kahle [28] and Bobrowski and Borman [7]. They combine probabilistic tools with
Morse theory to give rigorous proofs of these phenomena. We mention also an early
lecture by Diaconis, available on the web [19], which suggests the general outline of
this picture, and a forthcoming paper [5] that also deals with some aspects of this
problem in a metric-measure setting (relevant to situations where the distribution
of points in nature does not follow the Riemannian uniform measure).

6. Technical appendix

As promised, we shall now be a little more formal and explain what persistent
homology really is. For this, however, we shall need to assume that the reader has
a basic working familiarity with the theory of simplicial homology. We shall also,
for simplicity, take all homologies over the group Z2. This is the material of Section
6.1.

The second subsection of the appendix explains how to carry these definitions
over to random complexes. To complete the Appendix we should have really added
a section on how one turns the excursion sets of a continuous random field into a
random filtered complex. This, as you will be able to guess, after reading the first
two subsections, is done by discretizing the parameter space of the random field
and then thresholding the field at various levels in order to obtain the simplices of
the filtered complex. You can find details of this in the report [34].
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16 Adler, Bobrowski, Borman, Subag, Weinberger

6.1. Persistent Homology

We start by considering growing sequences of simplicial complexes that grow in the
following manner.

Definition 6.1. A filtered simplicial complex is a sequence of simplicial complexes,
K = {Kj}j≥0, such that

Ĉn (K0) ⊂ Ĉn (K1) ⊂ Ĉn (K2) ⊂ Ĉn (K3) ⊂ · · · ,

for all n ≥ 0, where Ĉn(K) is the collection of all n-simplices in the complex K.

We say that a simplex σ enters the filtered complex K at the entrance time i
if σ ∈ Ki and σ /∈ Kj for all j < i. Occasionally, we shall use the term filtration
instead of filtered complex.

The usual computation of the homology groups of the complexes Kj is done
for each j at a time, and so does not allow for comparison of homologies between
complexes. The idea of persistent homology is to take the filtration into account
and so be able to describe how homological properties persist or disappear as k
grows.

Denoting the n-cycles of a complex K by Zn(K) and the n-boundaries by Bn(K),
note that any cycle in Zn(Kj) also belongs to Zn(Kj+1) and boundaries in Bn(Kj)
belong to Bn(Kj+1). This allows us to define the linear maps

i
(n,j)
∗ : Hn (Kj) −→ Hn (Kj+1) ,

z̄ = z +Bn (Kj) 7−→ z̄ = z +Bn (Kj+1) .

Definition 6.2. The p-persistent n-th homology group of Kj is defined by

Hp
n (Kj) = ip∗ (Hn (Kj)) ⊂ Hn (Kj+p) ,

where ip∗ denotes the composition

i
(n,j+p−1)
∗ ◦ i(n,j+p−2)

∗ ◦ · · · ◦ i(n,j)∗ .

The non-zero elements of the persistent homology group are the images of n-
cycles which exist at time j (i.e. belong to Kj) and which ‘survive’ until time j+p,
in the sense that they are not nullified by becoming a boundary.

We now restrict the discussion to filtered complexes of finite type.

Definition 6.3. We say that a filtered simplicial complex K = {Kj}j≥0 is of finite

type if, for all j ≥ 0 and n ≥ 0, Ĉn (Kj) is finite and if there exists an index i such
that Kj = Ki for all j ≥ i.

Now fix n ≥ 0. Recall that we are working with Z2, so that the Hn(Kj) are
all vector spaces. Using algebraic arguments1 it can be shown that for any filtered
complex of a finite type it is possible to choose bases {cj1, c

j
2, . . . , c

j
mj
}, of Hn(Kj),

for all j ≥ 0, such that for any 1 ≤ k ≤ mj , i∗(c
j
k) ∈ {0, cj+1

1 , cj+1
2 , . . . , cj+1

mj+1
} and

i∗(c
j
k) = i∗(c

j
k′) for k 6= k′ only if i∗(c

j
k) = 0.

1For details see [39].
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Figure 6.1 shows an example of this relation between the bases for a certain
filtered complex. The elements below each of the homologies form a basis of the
homology. Note that we have written Hk ≡ Hn(Kk) in order to save space.

H0 H1 H2 H3 H4 H5 H6 · · ·
c01

i∗7→ c11
i∗7→ c21

i∗7→ c31
i∗7→ c41

i∗7→ 0
c12

i∗7→ c22
i∗7→ 0

c32
i∗7→ c42

i∗7→ c51
i∗7→ c61

i∗7→ · · ·
c43

i∗7→ c52
i∗7→ 0

c53
i∗7→ 0

c62
i∗7→ · · ·

Fig 6.1 Bases across the filtration.

For any basis element cjk which is not an image of a previous basis element cj−1
k ,

either there is a minimal number p ≥ 1 such that ip∗(c
j
k) = 0 or ip∗(c

j
k) 6= 0 for any

p ≥ 1. Each such element can be matched to the interval (j, j+ p), or, respectively,
(j,∞). These intervals give rise to the graphical presentation in the form of a
barcode. The horizontal axis of the barcode scheme represents time - i.e. the index
of the complex - and each bar spanning the interval from j to i corresponds to an
interval (j, i) linked to a basis element as above.

Fig 6.2. Barcode representation of homology bases.

Thus, for the bases of Figure 6.1, assuming that Kj = K6 for all j ≥ 6, the
barcode is as in Figure 6.2.

Note that the Betti numbers of each of the complexes in the filtration can be
easily derived from its barcode: βn(Kj) is the number of bars which intersect a
vertical line at time j, excluding those ending at time j.

Recall that we considered a single fixed dimension of the homology, n. The
collections of bars of persistent homologies of all dimensions is called the barcode
of the filtered complex (of finite type) K = {Kj}j≥0.

6.2. Random filtered complexes and entrance time fields

Random filtered complexes are the link between the ‘deterministic’ notion of per-
sistent homology and the random setting.

Assuming the ubiquitous probability space (Ω,F , P ), a random filtered complex
will be defined as a mapping from Ω to some space F of filtered complexes. However,
allowing F to be too general makes it virtually impossible to define a meaningful
σ-algebra on it, and so we shall restrict our discussion here to cases in which the
elements of F are all sub-complexes of finite universal complex. Among other things,
this implies that they are of finite type.
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We begin with a trivial generalization of the definition of a filtered simplicial
complex. We now allow the set of indices of a filtered complex to be any well-
ordered infinite set in R ∪ {−∞}, so that a filtered complex is now of the form
K = {Kα}α∈A. The definitions which followed the definition of filtered complexes
can be easily adjusted accordingly. The motivation for this is that, while in the
deterministic case one deals with a fixed filtered complex, with a fixed set of indices,
in the random case one needs to assign indices meaningful to a wider possible set
of outcomes, and the natural numbers no longer suffice as an index set.

In addition, for the discussion of random filtered complexes, we think of finite
type complexes as having only a finite number of indices by discarding the con-
stant tail of complexes. Formally, we can think about it as restricting ourselves to
discussing only complexes with tail defined in a canonical way: for all filtrations,
{Kα}α∈A, there exists α0 ∈ A such that for all α0 ≤ α ∈ A, Kα0 = Kα and such
that A∩ [α0,∞) = {α0 + i}∞i=0. To save some tedious notation we simply work with
a finite portion of the complex.

Next, some notation. For a given simplex σ in a filtered complex, we define its
entrance time

ent ≡ ent(σ) ∆= min {α : σ ∈ Kα} ,

if the minimum is finite and ∞ otherwise. For a simplicial complex K, let F(K)
denote all finite type filtrations, {Kα}α∈A, of K satisfying the condition that, for
any α ∈ A, there exists a simplex σ ∈ K with entrance time ent(σ) = α. This con-
dition basically says that we consider filtrations with no ‘spare’ complexes, which,
loosely speaking, contain no additional information.

Note that we then have the natural injective mapping

π ≡ πK : F (K) −→
∏
σ∈K

Rσ = Rcard(K)
, {Kα}α∈A 7−→ {ent (σ)}σ∈K .

Using the mapping π, F(K) can be endowed with the structure of a measurable
space, determined by the rule: F ⊂ F(K) is measurable if and only if F = π−1(B)
for some Borel set B in

∏
σ∈K Rσ, with respect to the standard product topology

on
∏
σ∈K Rσ. We denote this σ-algebra by B(K).

Note that B(K) is the Borel σ-algebra on F(K), when endowing it with the
topology defined by the rule: F ⊂ F(K) is open if and only if F = π−1(G) for some
open set G in

∏
σ∈K Rσ.

We are now finally ready to define the random filtration of a complex.

Definition 6.4. Let K be a fixed universal complex. A random filtration of K is a
measurable function K : (Ω,F)→ (F(K),B(K)).

The following lemma, in which R denotes the two point compactification of R,
is now straightforward.

Lemma 6.5. For a finite complex K, the mapping K : (Ω,F) → (F(K),B(K))
is measurable if and only if entK(ω)(σ) : (Ω,F) → (R,B(R)) is measurable for all
σ ∈ K (where B(R) is the Borel σ-algebra on R).

Lemma 6.5 implies that π ◦K is a random field on K. The next result shows that
under certain compatibility conditions on a field on K, the converse is also true.

Definition 6.6. Let E = {Eσ}σ∈K be a random field on a finite simplicial complex
K. If Eσ (ω) ≤ Eτ (ω) for any simplices σ, τ ∈ K for which σ ⊂ τ , we say that E
is an entrance time field on K.
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Corollary 6.7. If E = {Eσ}σ∈K is an entrance time field on a finite simplicial
complex K, then π−1

K (E) is a random filtration of K. Moreover, πK gives a 1-1
correspondence between random filtrations and entrance time fields on K.

Note that even when a field E
′

on K does not satisfy the condition of Definition
6.6 we can define an entrance time field by E = max{E′τ : τ ⊂ σ}.
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