
Preface

Since the term “random field’’ has a variety of different connotations, ranging from

agriculture to statistical mechanics, let us start by clarifying that, in this book, a

random field is a stochastic process, usually taking values in a Euclidean space, and

defined over a parameter space of dimensionality at least 1.

Consequently, random processes defined on countable parameter spaces will not

appear here. Indeed, even processes on R
1 will make only rare appearances and,

from the point of view of this book, are almost trivial. The parameter spaces we like

best are manifolds, although for much of the time we shall require no more than that

they be pseudometric spaces.

With this clarification in hand, the next thing that you should know is that this

book will have a sequel dealing primarily with applications.

In fact, as we complete this book, we have already started, together with KW

(Keith Worsley), on a companion volume [8] tentatively entitled RFG-A, or Random

Fields and Geometry: Applications. The current volume—RFG—concentrates on

the theory and mathematical background of random fields, while RFG-A is intended

to do precisely what its title promises. Once the companion volume is published,

you will find there not only applications of the theory of this book, but of (smooth)

random fields in general.

Making a clear split between theory and practice has both advantages and disad-

vantages. It certainly eased the pressure on us to attempt the almost impossible goal

of writing in a style that would be accessible to all. It also, to a large extent, eases the

load on you, the reader, since you can now choose the volume closer to your interests

and so avoid either “irrelevant’’mathematical detail or the “real world,’’depending on

your outlook and tastes. However, these are small gains when compared to the major

loss of creating an apparent dichotomy between two things that should, in principle,

go hand-in-hand: theory and application. What is true in principle is particularly true

of the topic at hand, and, to explain why, we shall indulge ourselves in a paragraph

or two of history.

The precusor to both of the current volumes was the 1981 monograph The Geom-

etry of Random Fields (GRF) which grew out of RJA’s (i.e., Robert Adler’s) Ph.D.

thesis under Michael Hasofer. The problem that gave birth to the thesis was an applied
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one, having to do with ground fissures due to water permeating through the earth un-

der a building site. However, both the thesis and GRF ended up being directed more

to theoreticians than to subject-matter researchers. Nevertheless, the topics there

found many applications over the past two decades, in disciplines as widespread as

astrophysics and medical imaging.

These applications led to a wide variety of extensions of the material of GRF ,

which, while different in extent to what was there, were not really different in kind.

However, in the late 1990s KW found himself facing a brain mapping problem on

the cerebral cortex (i.e., the brain surface) that involved looking at random fields

on manifolds. Jonathan Taylor (JET) looked at this problem and, in somewhat of a

repetition of history, took it to an abstract level and wrote a Ph.D. thesis that completely

revolutionized1 the way one should think about problems involving the geometry

generated by smooth random fields. This, and subsequent material, makes up Part III

of the current, three-part, book.

In fact, this book is really about Part III, and it is there that most of the new

material will be found. Part I is mainly an adaptation of RJA’s 1990 IMS lecture

notes, An Introduction to Continuity, Extrema, and Related Topics for General Gauss-

ian Processes, considerably corrected and somewhat reworked with the intention of

providing all that one needs to know about Gaussian random fields in order to read

Part III. In addition, Part I includes a chapter on stationarity. En passant, we also

included many things that were not really needed for Part III, so that Part I can be

(and often has been) used as the basis of a one-quarter course in Gaussian processes.

Such a course (and, indeed, this book as a whole) would be aimed at students who

have already taken a basic course in measure-theoretic probability and also have some

basic familiarity with stochastic processes.

Part II covers material from both integral and differential geometry. However, the

material here is considerably less standard than that of Part I, and we expect that few

readers other than professional geometers will be familiar with all of it. In addition,

some of the proofs are different from what is found in the standard geometry literature

in that they use properties of Gaussian distributions.2

There are two main aims to Part II. One is to set up an analogue of the critical point

theory of Marston Morse in the framework of Whitney stratified manifolds. What

makes this nonstandard (at least in terms of what most students of mathematics see

as part of their graduate education) is that Morse theory is usually done for smooth

manifolds, preferably without boundaries. Whitney stratified manifolds are only

piecewise smooth, and are permitted any number of edges, corners, etc. This brings

them closer to the objects of integral geometry, to which we devote a chapter. While

the results of this specific chapter are actually subsumed by what we shall have to

say about Whitney stratified manifolds, they have the advantage that they are easy to

state and prove without heavy machinery.

The second aim of Part II is to develop Lipschitz–Killing curvatures in the setting

of Whitney stratified manifolds and to describe their role in what are known as “tube

1 This verb was chosen by RJA and not JET.
2 After all, since we shall by then have the Gaussian Part I behind us, it seems wasteful not

to use it when it can help simplify proofs.
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formulas.’’ We shall spend quite some time on this. Some of the material here is

“well known’’ (albeit only to experts) and some, particularly that relating to tube and

Crofton formulas in Gauss space, is new. Furthermore, we derive the tube formulas

for locally convex Whitney stratified manifolds, which is both somewhat more general

than the usual approach for smooth manifolds, and somewhat more practical, since

most of the parameter spaces we are interested in have boundaries. In addition, the

approach we adopt is often unconventional.

These two aims make for a somewhat unusual combination of material and there is

no easily accessible and succinct3 alternative to our Part II for learning about them. In

the same vein, in order to help novice differential geometers, we have included a one-

chapter primer on differential geometry that runs quickly, and often unaesthetically,

through the basic concepts and notation of this most beautiful part of mathematics.

However, although Parts I and II of this book contain much material of intrinsic

interest we would not have written them were it not for Part III, for which they provide

necessary background material. What is it in Part III that justifies close to 300 pages

of preparation? Part III revolves around the excursion sets of smooth, R
k-valued

random fields f over piecewise smooth manifolds M . Excursion sets are subsets of

M given by

AD ≡ AD(f, M)
�
= {t ∈ M : f (t) ∈ D}

for D ⊂ R
k .

A great deal of the sample function behavior of such fields can be deduced from

their excursion sets and a surprising amount from the Euler, or Euler–Poincaré, char-

acteristics of these excursion sets, defined in Part II. In particular, if we denote the

Euler characteristic of a set A by ϕ(A), then much of Part III is devoted to finding

the following expression for their expectation, when f is Gaussian with zero mean

and unit constant variance:

E{ϕ(AD)} =

dim M
∑

j=0

(2π)−j/2
Lj (M)Mk

j (D). (0.0.1)

Here the Lj (M) are the Lipschitz–Killing curvatures of M with respect to a Riemann-

ian metric induced by the random field f , and the M
k
j (D) are certain Minkowski-like

functionals (closely akin to Lipschitz–Killing curvatures) on R
k under Gauss mea-

sure.

If all of this sounds terribly abstract, the truth is that it both is, and is not. It is

abstract, because while (0.0.1) has had many precursors over the last 60 years or so, it

has never before been established in the generality described above. It is also abstract

in that the tools involved in the derivation of (0.0.1) in this setting require some rather

heavy machinery from differential geometry. However, this level of abstraction has

3 The stress here is on “succinct.’’ With the exception of the material on Gauss space, almost

everything that we have to say can be found somewhere in the literatures of integral and

differential geometry, for which there are many excellent texts, some of which we shall list

later. However, all presume a background knowledge that is beyond what we shall require,

and each contains only a subset of the results we shall need.
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turned out to pay significant dividends, for not only does it yield insight into earlier

results that we did not have before, but it also has practical implications. For example,

the approach that we shall employ works just as well for nonstationary processes as

it does for stationary ones.4 However, nonstationarity, even on manifolds as simple

as [0, 1]2, was previously considered essentially intractable. Simply put, this is one

of those rare but constantly pursued examples in mathematics in which abstraction

leads not only to a complete and elegant theory, but also to practical consequences.

An extremely simple and very down-to-earth application of (0.0.1) arises when

the manifold is the unit interval [0, 1], f is real-valued, and D = [u, ∞). In that

case, E{ϕ(AD)} is no more than the mean number of upcrossings of the level u by the

process f , along with a boundary correction term. Consequently, modulo the bound-

ary term, (0.0.1) collapses to no more than the famous Rice formula, undoubtedly

one of the most important results in the applications of smooth stochastic processes.

If you are unfamiliar with Rice’s formula, then you might want to start reading this

book at Section 11.1, where it appears in some detail, together with heuristic, but

instructional, proofs and applications.

One of the reasons that Rice’s formula is so important is that it has long been used

as an approximation, for large u, to the excursion probability

P

{

sup
t∈[0,1]

f (t) ≥ u
}

,

itself an object of major practical importance. The heuristic argument behind this

is simple: If f crosses a high level, it is unlikely do so more than once. Thus, in

essence, the probability that f crosses the level u is close to the probability that there

is an upcrossing of u, along with a boundary correction term. (The correction comes

from the fact that one way for supt∈[0,1] f (t) to be larger than u is for there to be

no upcrossings but f (0) ≥ u.) Since the number of upcrossings of a high level will

always be small, the probability of an upcrossing is well approximated by the mean

number of upcrossings. Hence Rice’s formula gives an approximation for excursion

probabilities.

If (0.0.1) is the main result of Part III, then the second-most-important result is

that, at the same level of generality and for a wide choice of D, we can find a bound

for the difference

|P{∃ t ∈ M : f (t) ∈ D} − E{ϕ(AD)}|.

A specific case of this occurs when f takes values in R
1, in which case not only can

we show that, for large u,

∣

∣

∣
P

{

sup
t∈M

f (t) ≥ u
}

− E{ϕ(A[u,∞))}

∣

∣

∣

is small, but we can provide an upper bound to it that is both sharp and explicit.

Given that the second term here is known from (0.0.1), what this inequility gives is

an excellent approximation to Gaussian excursion probabilities in a very wide setting,

something that has long been a holy grail of Gaussian process theory.

4 Still assuming marginal stationarity, i.e., zero mean and constant variance.
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In the generality in which we shall be working, the bound is determined by geo-

metric properties of the manifold M with the induced Riemannian metric mentioned

above. Furthermore, unlike the handwaving argument described above for the simple

one-dimensional case, the new tools provide a fully rigorous proof.

At this point we should probably say something about why we chose to take

piecewise smooth manifolds as our generic parameter space. This is perhaps best

explained via an example. Suppose that we were to take parameter spaces that were

smooth, even C∞, manifolds, with C∞ boundaries.

C

C

BA

BA

Fig. 0.0.1. A C∞ function defined over a manifold with a C∞ boundary gives excursion sets

that have sharp, nondifferentiable, corners.

Such an example is shown in Figure 0.0.1, where the parameter space is a disk.

The three excursions of a (C∞) function f above some nominal level are marked on

the function surface, and these lie above the three corresponding components of the

excursion set A[u,∞). Note that, despite the smoothness of each component of this

example, the excursion set has sharp corners where it intersects with the boundary of

the parameter space. In other words, A[u,∞) is only a piecewise smooth manifold.

It turns out that since we end up with piecewise smooth manifolds for our excursion

sets, there is not a lot saved by not starting with them as parameter spaces as well.5

So now you know what awaits you at the end of the path through this book.

However, traversing the path has value in itself. Wandering, as it does, through the

fields of both probability and geometry, it is a path that we imagine not too many of

you will have traversed before. We hope that you will enjoy the scenery along the

way as much as we have enjoyed describing it. (We also hope, for your sake, that it

will be easier and faster in the reading than it was in the writing.)

We are left now with two tasks: Advising how best to read this book, and offering

our acknowledgments.

5 Of course, we could simplify things considerably by working only with parameter spaces

that have no boundary, something that would be natural, for example, for a differential

geometer. However, this would leave us with a theory that could not handle parameter

spaces as simple as the square and the cube, a situation that would be intolerable from the

point of view of applications.
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The best way to read the book is, of course, to start at the beginning and work

through to the end. That was how we wrote it. However, here some other possibilities,

depending on what you want to get out of it.

(i) A course on Gaussian processes: Chapters 1 through 4 along with Sections 5.1

through 5.4 if you want to learn about stationarity as well. These chapters can

be read in more or less any order; see the comments in the introduction to Part I.

(ii) Random fields on Euclidean spaces, with an accent on geometry: Sections 1.1–

1.4.2 and Chapter 3 for basic Gaussian processes, Sections 4.1, 4.5, and 4.6

for some classical material on extremal distributions, and Chapter 5 on station-

arity. Chapter 6 and Section 9.4 give the basic geometry and Chapter 11 the

random geometry of Gaussian fields. Section 14.4 gives examples of how the

results of Chapter 11 relate to excursion probabilities, and Section 15.10 gives

examples of the non-Gaussian theory. (Note that because you have chosen to

remain in the Euclidean scenario, and so avoid most of the real challenges of

differential geometry, you have been relegated to reading examples instead of

the general case!)

(iii) Probabilisitic problems in, and using, differential geometry: Sections 1.1, 1.2

and the results (but not proofs) of Chapter 3 to get a bare-bones introduction to

Gaussian processes, along with Sections 5.5 and 5.6 for some important notation.

As much of Chapter 7 as you need to revise differential-geometric concepts,

followed by Chapters 8, 9, and 10. The punch line is then in Chapters 12 and 13

for Gaussian processes and Chapter 15 in general. It is only in this last chapter

that you will get to see all the geometric preliminaries of Part II in play at once.

(iv) Applications without the theory: Wait for RFG-A. We are working on it!

Now for the acknowledgments. Both RJA and JET owe debts of gratitude to KW,

and we had better acknowledge them now, since we can hardly do it in the preface

of RFG-A.

Beyond our personal debts to KW, not least for getting the two us of together,

the subject matter of this book also owes him an enormous debt of gratitude. It

was during his various extensions and applications of the material of GRF that the

passage between the old Euclidean theory and its newer manifold version began to

take shape. Without his tenacious refusal to leave (applied) problems because the

theory (geometry) seemed too hard, the foundations on which our Part III is based

would never have been laid.

Back to the personal level, we also owe debts of gratitude to numerous students

at the Technion, UC Santa Barbara, Stanford, and the ICE-EM in Brisbane who sat

through courses as we put this volume together, as well as the group at McGill that

went through the book as a reading course with KW. Their enthusiasm, patience, and

refusal to take “it is easy to see that’’ for an answer when it was not all that easy to

see things, not to mention all the typos and errors that they found, has helped iron a

lot of wrinkles out of the final product.

In particular, we would like to thank Nicholas Chamandy, Sourav Chatterjee,

Steve Huntsman, Farzan Rohani, Alessio Sancetta, Armin Schwartzman, and Sreekar

Vadlamani for their questions, comments, and, embarrassingly often, corrections.
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The ubiquitous anonymous reviewer also made a number of useful suggestions and

we are suitably grateful to him/her.

The generous support of the U.S.–Israel Binational Science Foundation, the Israel

Science Foundation, the U.S. National Science Foundation, the Louis and Samuel

SeidenAcademic Chair, and the Canadian Natural Sciences and Engineering Research

Council over the (too long a) period that we worked on this book are all gratefully

acknowledged.

Finally, don’t forget, after you finish reading this book, to run to your library for

a copy of RFG-A, to see what all of this theory is really good for.

Until such time as RFG-A appears in print, preliminary versions will be available

on our home pages, which is where we shall also keep a list of typos and/or corrections

for this book.

Robert J. Adler Jonathan E. Taylor

Haifa, Israel Stanford, CA, USA

ie.technion.ac.il/Adler.phtml www-stat.stanford.edu/∼jtaylo


