Some New Random Field Tools for Spatial Analysis
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Abstract This is a brief review, in relatively non-
technical terms, of recent rather technical advances in the
theory of random field geometry. These advances have
provided a collection of explicit new formulae describ-
ing mean values of a variety of geometric characteristics
of excursion sets of random fields, such as their volume,
surface area and Euler characteristics. What is particu-
larly important in these formulae is that whereas the pre-
vious theory covered only stationary, Gaussian random
fields, the new theory requires neither stationarity nor, a
fortiori, isotropy. Furthermore, it covers a wide class of
non-Gaussian random fields. The formulae provided by
these advances have a wide range of potential applica-
tions, including new techniques of parameter estimation,
model testing, and thresholding for spatial and space-
time functions. The paper reviews this theory, and pro-
vides brief descriptions of some of the applications.

Key words: Random field, excursion set, nodal domain,
Euler characteristic, stationary processes, spatial analy-
sis.

1 Introduction

Random fields, a generic term that I shall use to describe
random processes defined over parameter spaces with di-
mension great than one, appear throughout the modelling
of spatial and space-time phenomenoma, whether space
is two or three dimensional. To note just a handful of ex-
amples, we have

e Physical oceanography and hydrology, where, as in
[2, 12], the spatial parameter might be the two dimen-
sional water surface or a three dimensional body of
water and the variable being measured might be water
temperature and/or pressure. If both are being mea-
sured, then we have an example of a vector-valued
random field.
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e Atmospheric studies, where the random field might
provide a model for wind speads or airborne contami-
nants, with a theory as described in [7].

e Geostatistics and other earth sciences, where, as for
oceanography, the spatial aspects of parameter spaces
may be two or three dimensional. cf. [5, 6, 11].

e Astrophysics, where random field techniques have
been heavily used in analysing the COBE (Cosmic
Background Explorer) data, which measures the ‘sig-
nature radiation’ from the universe of 15 billion years
ago [15, 20, 21]. This is directional data, and so is
realised as a random field on the two-dimensional
sphere. Three dimensional astrophysical data has been
generated by the Sloan digital sky survey [9] where, as
we shall describe later, heavy use has been made of the
geometrical theory that is at the centre of this review.

e Analysis of functional magnetic resonance imaging
(fMRI) data. This is the archtypical example that will
be used throughout this paper, and so I shall leave the
details until later.

The theory of random fields has undergone a minor
revolution over the past few years in terms of its abil-
ity to provide precise geometric information about the
global behaviour of sample paths. While this work was
motivated by applications, it has appeared primarily in
the pure mathematical literature and, even by its esoteric
standards, is not always very easy to read.

In this brief review we want to describe some of these
results in simpler language, as well as discussing some
of their applications.

The new results centre on the geometry of the so-
called excursion sets or nodal domains of random fields.
To describe these, we first define a random field to be
a random function f defined over a parameter space M,
which we shall always take to be a bounded region in
N-dimensional Euclidean space, R". The random field
itself might be real or vector valued. In general, we let it

take values in R¥, k > 1. If D is a subset of R¥, then the
excursion set of f in D and over M is defined by

Ap=Ap(f,M) 2 {xe M: f(x) € D}. (1)
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In the particular case that f is real-valued and D is the
set [u,0), we are looking at those points in the parameter
space M at which f takes values larger than u, and write

AZAfM)E{xeM: f()>u}. @
In general, we shall call D a hitting set.

Perhaps the first studied example of a real valued ran-
dom field in two dimensions is due to Matérn [10], who
modelled forestry yields f(x) as a function of a two-
dimensional positional variable x. The excursion sets
were then high yield geographical regions. Real valued
random fields defined over R? abound in environmental
data, given, for example, by pollutant levels in space. If
more than one pollutant is measured, then the random
field becomes vector valued and the sets D defining ex-
cursion sets can become quite involved. For example, if
interest is in regions where at least one of the pollutants
takes some minimal value — say u; for the i-th pollutant,
i=1,...,k —then D will be simply the complement in

R of the semi-infinite rectangle [T_, (—oo,u;). However,
if interest lies in some combination of pollutants, then D
will reflect this and will be, geometrically, as complicated
as is the formula for the combination.

Examples with four dimensional parameter sets are
also common: One needs only add time to examples that
otherwise deal with three dimensional space. Space-time
examples are important, and an example where the new
theory has something to offer that the old theory did
not. It is obvious that, in essentially all real scenarios,
the structure of temporal dependence is quite different to
that of spatial dependence. Therefore, models restricted
to assumptions such as isotropy become problematic in
space-time. Indeed, even stationarity can be a problem
in dealing with processes where, perhaps because of ex-
ternal factors, there is no intrinsic temporal stationarity,
despite there being spatial stationarity, or vice versa. We
shall close the introduction with a (perhaps surprisingly)
simple example of an eight-dimensional random field,
which highlights the need for a theory that does away
with classical assumptions on the simplicity of the pa-
rameter space and directionally homogeneous stochastic
behaviour of the random field.

However, since we have not described what the new
theory does, we shall do this first. Given that excursion
sets are of intrinsic interest, it would be nice to under-
stand a little of their properties, such as how many com-
ponents they have, how large they are, what is the size
of their boundaries, etc. There are a number of ways
to quantify these properties, and for N dimensional sets
geometers have developed N + 1 numerical quantifies,
known under a variety of names, including Quermassin-
tegrales, Minkowski or Steiner functionals, integral cur-
vatures, intrinsic volumes, and Lipschitz-Killing curva-
tures, hereafter LKCs. The differences between them
are only of ordering and scaling, and although it is the
longest of all names, we shall choose LKCs, for consis-
tency with our basic reference [3]. We shall denote the
LKCs of a N-dimensional set A by %(A),..., Zn(A)
and, in many ways, they can be thought of as measures of
the ‘j-dimensional sizes’ of A. For example, when N =2
they have the following meanings:
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o 7 (A) is the two dimensional area of A.

e _Z1(A) is half the boundary length of A.

e Z)(A) is the Euler characteristic of A, which in two
dimensions is given by

Z0(A) = #{connected components in A}
— #{‘holes’ in A}.

3)

When N = 3,

e 73(A) is the three dimensional volume of A.

£ (A) is half the surface area of A.

o Z(A) is twice the caliper diameter of A, where the
caliper diameter of a convex A is defined by plac-
ing the solid between two parallel planes (or calipers),
measuring the distance between the planes, and aver-
aging over all rotations of A. Thus the caliper diameter
of a sphere is just the usual diameter, while for a rect-
angular box of size a x b x c it is (a+ b+ c)/2, half
the ‘volume’ used by airlines to measure the size of
luggage.

o %(A) is again the Euler characteristic of A, which in
three dimensions is given by

Z(A) = #{connected components in A} 4)

—#{‘handles’ in A} +#{ ‘holes’ in A}.

We shall give further definitions for general dimensions
in Section 3.

What the new theory provides is explicit formulae for
the expectations of the LKC’s of excursion sets — that is
for

E{.Z;(Ap(f,M))}, )

— for a wide class of random fields f, over a large class
of parameter sets M, and for a large class of sets D.

Without yet being explicit about the precise structure
of these formulae, we discuss some of their uses.

Signal detection and thresholding

Consider the classical signal+noise paradigm, which
considers the model

f(x) = s(x) +1(x). (©)

The signal s is deterministic, and, purely for reasons of
exposition, is assumed to take primarily positive values
if, in fact, it is present. The noise 1 is a mean zero ran-
dom field of background noise, the statistical properties
of which are assumed to be known. The first problem
here is determining whether or not the signal is at all
present, and, in view of the assumed positivity of s, a
useful statistic for testing this is the threshold statistic

sup f(x).

xeM

(In fact, the supremum is the maximum likelihood statis-
tics for this test, if 1 is Gaussian white noise smoothed
with a filter with shape matching that of the signal. This
is the ‘matched filter theorem’ of signal processing.)
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In order to use this statistic, or, indeed, to perform any
statistical thresholding technique, one needs to know how
to compute, at least for large values of u, the excursion
probabilities

P{sup f(x) > u}, 0

xeM

when no signal is present. (By ‘large’ we mean large
enough for this probability to be less that about 0.10, the
level at which one usually begins to talk about statistical
significance.)

It has long been acknowledged that, for many random
fields,

‘P{jg/gf(x) > u} —E{% A.(f,M))}| <error(u),
3)

where the error function is of a smaller order than both
of the other terms. This means that the excursion proba-
bilities (7), which are intrisically uncomputable, can ef-
fectively be replaced by an expectation which might be
more accessible.

Two of the contributions of the recent theory are the
computation of this expectation in wide generality, and
a full proof that, at least for Gaussian random fields, not
only finally rigorously established (8) but even identified
the structure of the function error. (cf. (35) below.)

Parameter estimation

Assume that we are dealing with a random field, the gen-
eral distributional structure of which is known, but for
which values of parameters are unknown. There are stan-
dard statistical techniques for estimating the means and
variances of random fields, as well as for estimating co-
variance functions, which we shall denote as

Clx,y) =E{f(x)f(},

assuming, from now on, and for notational convenience,
that any non-zero mean has already by removed from f.
(When f is stationary, we shall adopt the usual notational
inconsistency of writing C(x —y) = C(x,y).) However,
estimates of covariance functions are often not well be-
haved, particularly in the non-stationary case, when they
are notoriously unreliable. Furthermore, in many situa-
tions, one needs to know only certain aspects of the co-
variance function, and not the entire function itself. For
example, if one is concerned with excursion probabilities
(7) for large u, and if f is stationary and Gaussian, then it
turns out that one needs only to know certain derivatives
of C in the neighbourhood of the origin, or, equivalently,
the second spectral moments of f. (cf. (23), (30) below.)

As opposed to simple means and variances, which de-
scribe static properties of f (i.e. properties of f at spe-
cific points) covariance and spectral parameters describe
dynamic behaviour over the entire parameter space, and
much can be done with them, without knowing the full
covariance function. From a statistical point of view, it
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is, of course, more efficient to estimate a handful of pa-
rameters than an entire function.

However, it is precisely these parameters that appear
in the formulae for the expected LKCs of excursion sets,
and so those formulae provide a tool for estimating these
parameters, by comparing expectations to empirically
observed properties of excursion sets.

Model testing

In this problem, which is in some sense an extension of
the parameter estimation problem, we are in the scenario
of dealing with a random field whose precise structure is
unknown, but it assumed to belong to some small class
of models. Since the forms of the expected LKCs of ex-
cursion sets are often quite different for different models,
comparing empirical data to various theoretical models
can be used to choose among models. This technique has,
for example, been used quite heavily in the astrophysical
literature (e.g. [15, 20, 21]) and we shall give an example
of how to use it in Section 7 below.

Finally, we complete this introduction of a quite con-
crete example of a random field over a rather complicated
subset of R®, in an attempt to convince the possibly scep-
tical, applied reader that there is actually is a need for the
practioners’ tool kit to include random fields over high
dimensional parameter spaces.

An eight dimensional example in scale-space

We shall take an example from fMRI brain imaging,
since we can then refer you to [14] for further details,
where the approach is notationally quite consistent with
this review. The problem, however, is quite generic.

In fMRI procedures, measurements are taken at a
large number of voxels in the (three-dimensional) brain.
For simplicity, we shall assume one such measurement
per voxel. However, these are not actually point mea-
surements, but each measurement is rather a local aver-
age, taken over a small ellipsoidal neighbourhood of the
voxel. Each such ellipsoid has three principle axes, the
lengths of each of which can be chosen by the technician
operating the scanner, giving three more dimensions to
the problem. The final two dimensions come from pos-
sible rotations of the ellipsoid. Thus, what seemed orig-
inally to be an observation taken at a point in the three
dimensional brain, is really an observation taken in the
eight dimensional space

brain x axes X rotation. 9

Why is this important? Suppose we are interested in
either a signal detection or thresholding problem as de-
scribed above, looking for signs of unusual behaviour
somewhere in the brain. The technician, as he plays with
the sizes of the axes and their rotations, is clearly playing
with the resolution of the image, and the classic ‘uncer-
tainty principle’ comes into play. The higher the reso-
Iution (i.e. the smaller the lengths of the principle axes
of the ellipsoids) the lower is the statistical reliability of
the measurements at individual voxels. Thus, in chang-
ing these parameters, the technician is implementing a
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control procedure which can impact quite strongly on the
excursion probability (7) and so on any thresholding and
risk assessment that comes from it, unless this probability
is calculated in the full, eight dimensional, scenario.

Note that the covariance function of this random field
will be neither stationary nor isotropic. Even if one treats
the basic, three-dimensional structure of the brain as
isotropic (and even this is suspect) the additional dimen-
sions added here behave very differently. Consequently,
handling this example calls for the development of a the-
ory of non-stationary random fields.

Note also that while we chose the fMRI example to
make our point, the problem itself is generic to any sit-
uation in which data collection involves a compromise
between resolution and smoothness. To put things more
bluntly, the problem arises whenever raw spatial data is
made up of some sort of local average, which is an almost
ubiquitous situation.

2 Gaussian and Related Random Fields

The basic random fields with which we shall work are
Gaussian ones, so that both their univariate and multi-
variate distributions are all normal. In the real valued
case, this means that the random function f : M — R has
the property that all collections

Fxr), .o fx),

of random variables have multivariate Gaussian distribu-
tions, for all k > 1 and all xy,...,x; € M. A similar def-
inition holds for vector valued random fields. We have
emphasised the words ‘and multivariate’ above on pur-
pose. Throughout the literature one finds examples in
which authors make a pointwise transformation to nor-
mality, and then claim normality for their process. The
argument, for real valued random fields, usually goes as
follows:

Collect data points of the random field f at points
xi€M,i=1,...,n, and form the empirical distribution
function

#Hi: fla) < u}.

Folu) = B2

Letting @ denote the distribution function of a standard
normal random variable, define the ‘Gaussianised’, or
sometimes just ‘standardised’, data to be

Y A

fap) 2o (Bf(x), Jj=1....

If the random field is stationary, and the sample size is
large enough, then it certainly is true that the random

field f has univariate distributions that are close to stan-
dard normal. However, no claim at all can be made about
the multivariate distributions, and so, a fortiori, about f
as a process, and the application of Gaussian process the-
ory can lead to quite significant errors. (The same is true

(10)

SN
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even if the empirical distribution function in (10) is re-
placed with the true, theoretical one, as we shall see in
Section 7.)

2.1 Gaussian related fields

Leaving the Gaussian scenario is, however, not all that
easy to do, and the new theory leaves it in a fashion that,
while somewhat limited, turns out to be broad enough to
cover many, if not most, statistical applications of ran-
dom fields. To be more precise, we shall call a random
field f : M — R? a Gaussian related field if we can find
a vector valued Gaussian random field,

g(x) = (81(x),...,8k(x)) : M — R,

with independent, identically distributed components
having zero means and unit variances, and a function

(1D

such that f has the same multivariate distributions as
F(g).

When k =1, or, in general k = d and F is invertible,
then the corresponding Gaussian related process is not
much harder to study than the original Gaussian one,
since what happens at the level u for f is precisely what
happens at the uniquely defined level F~!(u) for g. In
fact, this actually falls into the class of transformations
that we warned against above, but in this case the trans-
formation argument ifs completely valid.

In the more interesting cases in which F' is not invert-
ible, f = F(g) can provide a process that is qualitatively
different to g. For example, consider the following three
choices for F', where in the third we set k = n + m.

F:RF 5 RY,

ixz xavk—1 M (12)
N6y £ RN D VA o

The corresponding random fields are known as x? fields
with k degrees of freedom, the T field with k — 1 degrees
of freedom, and the F field with n and m degrees of free-
dom. These three random fields all have very different
spatial behaviour, and each is as fundamental to the sta-
tistical applications of random field theory as is its cor-
responding univariate distribution to standard statistical
theory. In each of these three cases, as in general for a
Gaussian related random field, there is no simple point-
wise transformation which will transform it to a real val-
ued Gaussian field.

Note that for a Gaussian related field f the excursion
sets Ap can be rewritten as

Ap(f,M) = Ap(F(g),M)
={xeM: (Fog)(t) e D}
={xeM:gx) e F (D)}
:AF*I(D)(gvM)'

(13)
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Thus, for example, the excursion set of a real valued
non-Gaussian f = F o g above a level u is equivalent
to the excursion set for a vector valued Gaussian g in
F1(u,)) € R,

We shall return to this important point later.

2.2 Regularity Assumptions

Although we do not want to get into detailed technicali-
ties here, we do need to put some restrictions on the cen-
tral objects of this review. We start with the parameter
spaces.

Parameter spaces

The general theory allows M to be what is known as a
Whitney stratified manifold, satisfying some mild side
conditions. Rather than define what these are, we shall
give a list of examples which should cover most of the
situations found in environmental engineering.

(i) Finite simplicial complexes. This includes sets such as
N-dimensional rectangles of the form

M
T =[Tlo,7], (14)
i=1

or unions of a finite number of such rectangles, as well
as most sets with flat boundaries.

(i) Reimannian manifolds, with or without boundary.
This includes sets such as N-dimensional balls and
spheres, and smooth deformations of them.

(ii1) Sets that can be written in the form

15)

where 0; is an i-dimensional set (the i-dimensional
‘boundary’ of M) that fits into the one of the first two
categories. For example, the eight dimensional exam-
ple of (9), which fits into neither of the first two cate-
gories, requires this level of generality.

We place on the hitting sets D appearing in the defi-
nition (1) of excursion sets one out of the above possible
assumptions on M.

Random fields

The basic building blocks of all the random fields we
consider are smooth Gaussian random fields, f: M €

RYN — R, The first assumption is a minor one, and only
for notational convenience, that all means be fixed at
zero. The second is more serious, and it is that f have
constant variance throughout M. Note that this is a much
weaker assumption than stationarity, and is achievable in
general by replacing a random field that does not have
constant variance by

_ fK)
f(x) - fstandardised(x) = W

This transformation is often useful and involves no loss
of infomation. For example, the excursion sets above
zero are the same for f and fyandardised-

However, the fact that the new theory requires only
constant variance and not full stationarity is extremely
useful, since in general there is no simple transforma-
tion which will take a non-stationary field to a stationarity
one. (See, however, [13], which shows that if one is pre-
pared to pay the price of moving to a higher dimensional
scenario than the one inherent to the problem, there is a
way around this.)

The final assumption of consequence on the Gaussian
processes, and the most important one, is that each of
the £ components of f is twice differentiable, and that
these derivatives are themselves continuous. Some addi-
tional minor assumptions of non-degeneracy also need to
be made, but since these are of little practical importance
we direct the interested reader to Chapter 11 of [3] or
Chapter 4 of [4] for details.

Gaussian related fields

Recall that Gaussian related fields were defined as point-
wise transformations of vector valued Gaussian fields.
We have already assumed that the components of these
fields are independent and identically distributed, and
now add the assumption that the function F of (11) be
twice continuously differentiable. As a consequence, all
our Gaussian related fields are also twice continuously
differentiable.

3 Tube formulae

In the Introduction we described the meanings of the
Lipschitz-Killing curvatures .Z; for two and three dimen-
sional sets, but we also need a definition in higher di-
mensions as well. We shall also soon need another set
of related geometric quantifiers, which we call Gaussian
Minkowski functionals, and all of these will be defined
in this section.

3.1 Lipschitz-Killing curvatures

The quickest way to define Lipschitz-Killing curvatures
is via a basic result of integral geometry known as
Steiner’s formula. Steiner’s formula deals with the N-
dimensional volume of enlargements of sets, where the
enlargment, or tube, of diameter p > 0 built around a set

A € RY is the set

Tube(d,p) = {x € R": minx— | < p}. (6
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An example is given in Figure 1, in which A is a solid tri-
angle and Tube(A, p) is the larger triangular region with
rounded corners. Note that Tube(A, p) always includes A
itself. To see from where the terminology comes, think of

A as being a curve in R, in which case Tube(A, p) really
does look like a (solid) physical tube.

Place Figure 1 near here.

Steiner’s theorem says that if Ay denotes volume in RY,
then, for convex A of dimension dim(A),

dim(A) )
Ay (Tube(A,p)) = Y ay_;p" 7 .Z5(4),
=0

a7)

where @; = n//z/F(l +j/2) is the volume of the unit
ball in R/. This (finite) power series in p defines the
LKCs, and by looking at examples, such as squares in
the plane and cubes in R?, you should find is easy to con-
vince yourself that the descriptions given earlier of the
LKCs in two and three dimensions are reasonable.

There are versions of Steiner’s formula for far more
general sets than convex ones, in which case they are usu-
ally called ‘tube formulae’ and generally associated with
the name of Hermann Weyl. For us it will suffice to know
that, for small enough p, (17) holds for all the sets that
we shall consider in this review.

It is quite easy to see from (17) that the LKCs satisty
a basic scaling relationship, in that

L(AA) = M.Z(A),

for 0 < j < dim(A) and A > 0, where AA = {x: x =
Ay, for some y € A}. Thus one can think of Z;(A ) as

some sort of measure of the ‘j-dimensional volum of
A.

3.2 Gaussian Minkowski functionals

We need one more set of geometrical tools, closely re-
lated to LKCs, before we can describe the new results
that are at the core of this review, and these are related to
the hitting sets D of (1).

Rather than measuring the basic Euclidean sizes of the
hitting sets, we want to measure aspects of their (Gaus-
sian) probability content. In particular, let X be a vector
of k independent, identically distributed, standard Gaus-

sian random variables, and, for a nice set A € R¥, write

oIl 2
k/2

%(A) = P{X €A} = /

Defining tubes exactly as before, it turns out that there
is a Taylor expansion for the probability contact of tubes
(due to Jonathan Taylor [19]), which we shall write as
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%(Tube(A, p)) = (18)

for small enough p. We call the coefficients .# }‘ (A) the
Gaussian Minkowski functionals (GMFs) of A. Clearly

AML(A) = %(A). Note that, unlike the expansion (17) in
Steiner’s theorem, this expansion is an infinite one.

To see how this expansion works in the simplest of
cases, take k = 1 and A = [u,0). Then, since

7 (Tube([u, %), p)) =1 ([u—p,=)))

where

:lP(u_p>7

W (u) = (21) 2 / T2 gy

is the tail probability function for a standard Gaussian
variable, a standard Taylor expansion along with proper-
ties of Hermite polynomials shows that

—u?)2
e
A (,00)) = Hyoa ()~ (19)
Here H,,, n > 0, is the n-th Hermite polynomial
n/2] (—1)ix"=2]
H,(x) =n! _— 2
(x)=n ,:ZO w2120 (20)

where |a] is the largest integer less than or equal to a.
When n = —1 we set
=V2r¥(x) /2,

H_i(x) 2D

In fact, it is not much harder to define the GMFs of
more general sets that arise in the study of Gaussian re-
lated random fields. With the notation of Section 2.1 let
f = F(g) be such a field. Then, as we already noted
above, it follows from (13), the excursion sets A, (f,M)
are those of g in the hitting sets F ~!([u,0)), and so these
are going to be of interest to us. If we now write py (u) for
the probability density of the random variable F(g(x))
(which for simplicity we shall assume does not depend
on x) then

for j > 1, while

ME(F (1,%0))) = 1 (F ' (,9)).
Although these formulae seem simple, they often involve
considerable delicate albegra to compute. For example, if
F(x) = ||x||%, so that the Gaussian related field is y? with
k degrees of freedom, then, for j > 1,

Yk(
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M} (F~ ([u,00))) 22)

uk—]e—u2/2 jT —1—=
Z Z k2 jom-21)
I(k/2)2! =0 m=0 o
% k—1 (— ) o m+l(] —1)! y2m+2l
j—1—m—2I mll12! ’

For details of this and other cases see Chapter 15 of [3]
or Chapter 4 of [4].

4 The main result - an expectation formula

We now come to the main result of the new theory, the
fundamental starting point of which was in Jonathan Tay-
lor’s 2001 McGill PhD thesis (cf. [16, 19]).

We present it first in the isotropic case. That is, we
assume that f : M — R¥ is a Gaussian random field,
the components of which are independent and identically
distributed, have mean zero and unit variance, and are
isotropic, with second spectral moment A, defined by

= (P50} = 5

ox?
(By isotropy, this definition does not depend on i.)
Then, for parameter spaces M of dimension N, and
hitting sets D of dimension k, and under the regularity
assumptions of Section 2.2, we have

. (23)
x=0

E (2 (4p(f.M))) 24
N—i it 7Ll+j
—ZO[ ] s i) 1 0),

where the so-called combinatorial ‘flag coefficients’ are

defined by
|:n:| <n> g

Remaining for the moment in the isotropic case, we
shall devote some space to explaining the meaning of
(24) by considering some examples.

First of all, we take k = 1, so that we are dealing with
a real valued random field, and also allow its variance
to be 62, which is not necessarily 1. To make life even
easier, we shall take the parameter space to be the N-
dimensional rectangle T of (14), and shall concentrate
on the case i = 0 in (24), so that we are looking only at
Euler characteristics, rather than general LKCs. Finally,
we shall take D = [u, 00). Thus, in summary, we are look-
ing at the expected Euler characteristic of the excursion
set, in a rectangle, of f above the level u.

To substitute into the right hand side of (24) we need to

know how to compute the .Z;(T') and .# jl (D). The latter,
however, are given by (19) and it is not hard to compute
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the former from Steiner’s formula. However, to describe
them, we need some notation.

In particular, we define a face J of T, of dimension k,
by fixing N — k coordinates, each of which is fixed at ei-
ther the top or bottom of the rectangle. Thus, taking the
three dimensional cube as a simple example, it has one
three dimensional ‘face’, this being the full cube itself. It
has six two dimensional faces, being its sides. The twelve
edges are one dimensional faces, and the eight corners

are zero dimensional faces. Now let &} denote the (1,\!)

k-dimensional faces which include the origin. Then it is
not to hard to show, from Steiner’s formula, that

N

2([To.1) = ¥ W,

i=1 Jeo,;

where |/| is the (j-dimensional) volume of J.

Putting the pieces together now gives that,
for isotropic random fields, E{¢@(A,(f,T))}, or
E{XO(AM(fv T))}’ is given by

> N | 7Lk/ 2
e 20

% 2 u u
L ¥ Gomarertio (5)+¥#(5). @

or, if T is a cube of side length T rather than a rectangle,
by

23 T
e 202 k;l (27[)(k+1)/26k Hk 1 ( ) +':P< ) .

To get a better feel for this equation, let us look at the
cases N =2 and N = 3, taking 6 = 1 for simplicity. In
the two dimensionsal case, we obtain

(26)

2T\

27

2
B o ()} = [@Tn;iz ’

Figure 2 gives two examples, both over the unit square,
one with A, = 200 and one with A, = 1,000.

W(u).(27)

Place Figure 2 near here.

There are at least four general points that come out of
from this example:

(i) You should note, for later reference, how the expres-
sion before the exponential term can be thought of as
one of a number of different power series; one in 7',

one in u, and one in /2.

(i1) The geometric meaning of the negative values of (27)
are worth understanding. They are due to the excur-
sion sets having, in the mean, more holes than con-
nected components for (most) negative values of u.

(iii) Note the impact of the value of the second spectral
moment. Large spectral moments lead to local fluctu-
ations generating large numbers of small islands (or
lakes, depending on the level at which the excursion



set is taken) and this leads to larger variation in the
values of E{¢@(A,)}.

(iv) Note that, as u — oo, E{¢(A,)} — 0. This is reason-

able, since at high levels we expect that the excursion
set will be empty, and so have zero Euler characteris-
tic.
On the other hand as u — —oo, E{¢(4,)} — 1. The
excursion set geometry behind this is simple. Once
u <infr f(t) wehave A, =T, and so ¢ (A,) = @(T) =
1.

In three dimensions, (26) becomes, again for cl=1,

E{o(Au)} =¥ (u)
e 127, 3 3rA)? T
‘e " Terp" T T2 (2n)p

Figure 3 gives an example, over the unit cube, with
> = 880.

Place Figure 3 near here.

Note that once again there are a number of different
power series appearing here, although now, as opposed
to the two dimensional case, there is no longer a simple
correspondence between the powers of T, /A, and u.

The two positive peaks of the curve are due to A, be-
ing primarily composed of a number of simply connected
components for large # and primarily of simple holes for
negative u. (Recall that in the three dimensional case the
Euler characteristic of a set is given by the number of
components minus the number of handles plus the num-
ber of holes.) The negative values of E{¢(A, )} for u near
zero are due to the fact that A,, at those levels, is com-
posed mainly of a number of interconnected, tubular like
regions; i.e. of handles.

Although we have discussed only the real valued case
in detail above, and for rather simple hitting sets, the ex-
tension of the isotropic case to vector valued and to Gaus-
sian related random fields should now be clear. Essen-
tially, the argument is the same, but the computation of

the GMFs .# J{‘ becomes more complicated. Consider the
case of a real valued y? random field, given by

fx)=gi(x)+---+ g (x),

where the g; are independent, identically distributed,
isotropic, mean zero, Gaussian random fields with
second spectral moment A,. Then the expectations
E{Z(A,(f,M))} follow immediately from (24). The
M ;‘ are as given in (22), and the .Z are precisely as we
just calculated for the simple Gaussian case.

An example of what the corresponding expected Eu-
ler characteristic curve looks like is given in Figure 4, for
which we have taken k = 5 and A, (the second spectral
moment of the underlying Gaussian processes) to be 20.
(The reason for this particular choice of parameters will
be given in Section 7.)
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Place Figure 4 near here.

The x? example exemplifies one of the most important
properties of (24), which is a separation of parameters,
by which we mean that the parameters relating to the ran-
dom field, to the parameter set, and to the hitting set do
not interact in other than a multiplicative fashion.

Unfortunately, this is not quite true when we leave the
isotropic situation. In the general case — with assump-
tions as above but with isotropy (and the implied station-
arity) replaced by an assumption only of constant unit
variance — (24) becomes

ELZ (A0 (/ M)
—Z H’] (21) L, (M) 4} (D).

(28)

However, in this equation the LKCs no longer have the
simple meanings that they have had up until now. We
shall try, in one short paragraph, to explain how they
change, but the details are technical and so we refer the
interested reader to [3] for details.

Consider either a real valued Gaussian random field
or a single component of a vector valued field. In either
case, denote this by f. At a point x € M, take two unit
vectors, say V| and V,, with base at x. Let V;f denote the
directional derivative of f in direction V;. Now define a
function g, on all such vectors by setting

g (Vi,V2) = E{Vif(x)Vaf(x)}.

Then g, defines what is known as a Riemannian metric
on M, turning it into a Riemannian manifold, and with
a corresponding notion of volume. It turns out that tube
formulae such as (17) still hold for such volumes, and the
coefficients in the corresponding expansion are the new
LKCs. Note that the LKCs (except for the Euler charac-
teristic .-Zp) now incorporate information about the ran-
dom field f, specifically information about the covari-
ances of partial derivatives. The fact that the Euler char-
acteristic does not change is a deep result known as the
Gauss-Bonnet theorem, and, as we shall see in the fol-
lowing section, is extremely convenient when looking at
excursion probabilities.

Despite the entrance of Riemannian geometry into our
story, there are at least two cases in which life is not too
bad, and it is possible to compute the LKCs quite simply.
For all the other cases we shall describe, in Section 6,
how to estimate them from data. In fact, this estimation
procedure is so simple that it enables one to use formu-
lae like (28), at least for the important case i = 0, without
even having to know the definition of the LKCs appear-
ing on the right hand side of the equation.

Now, however, we consider the two simple cases. The
first occurs under stationarity, for which we can define a
collection of second order spectral moments by

/L-j—]E{ g)(c,) 5351)} :_31,%(2

(29)

. (30
x=0
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Return now to the case (14) of a N-dimensional rectan-
gle T. Let (e, ...,exn) be the usual set of axes in R and
for a k-dimensional face J let A; be the matrix of sec-
ond spectral moments A;; for which i and j satisfy the
requirement that both e; and e; intersect J at points other
than the origin. (If dim(J) = 0, then we define A; to be
the constant 1.) Then the LKCs of (28) become

Y. 1] [det(an)]'2,
JeO,

something which is quite simple to evaluate in practice.
Unfortunately, however, the computation is a little more
complicated when the parameter space is not a rectangle.
However, the GMFs, as always, are independent of the
properties of both f and M.

Another helpful situation arises when one is interested
in high level excursion sets of real valued random fields.
Looking back at results such as (25) and (26), we note
that they have the form of a power series expansion in u,
so that, if u is large, the first term in the expansion should
dominate all the others. Putting this together with (28)
now tells us that, at least for real valued Gaussian fields
of unit variance, we should have

E {2 (Au(/, M)}
~ [V am o on) ),

3D

where we intepret a(u) ~ b(u) to mean that
lim,_,.a(u)/b(u) = 1. Thus, all we need, at least for
asymptotics, is to know how to compute Zy(M). How-
ever, although the other LKCs are hard to compute in
general, there is a simple representation for this one. In
fact, if we let A (x) be the N x N matrix with elements

9f(x) 91 (x) }
8xl- 8x‘,~

~ 9%C(u,v)
N 8u,-(9v.,-

)
U=v=x

2 (%) :IE{

then one can show that

L(M) = /

M

[det (A (x))]'/* dx,

so that (31) becomes a very general, and useful, result.

5 Excursion probabilities

We now want to see how the formulae of the previous
section can be applied to evaluating excursion probabili-
ties, something which we have already mentioned is one
of their main applications.

Actually, most of what we had to say was already said
in equation (8), where we pointed out that, for many ran-
dom fields,

P{sup 1) > u} ~E{p (A, M)} | < error(u)
(32)

where ¢ = % is the Euler characteristic. The previous
section was devoted to ways of computing the expecta-
tion here for a wide class of random fields, and so all we
have left to do is to say something about the error func-
tion and offer a heuristic explanation as to why such a
result might hold. We start with the heuristics.

Note firstly that

supf(x) >u <= A,(f,M)#0
xeM

(33)
<= #{connected components of A, } > 1.

Consider the Euler characteristic of A,. Recall, that we
already saw, in two and three dimensions, that @(A,) is
equal to the number of connected components of A,,, plus
or minus other factors, such as the numbers of holes and
handles. In fact, it is true in any dimension that the Eu-
ler characteristic of a set is given by the number of its
connected components, plus an alternating sum of what
might be called ‘higher order’ functionals, which, as the
dimension grows, describe more and more complicated
geometric structures. However, it can be shown that, as
u becomes large, the structure of an excursion set A, be-
comes rather simple, containing only simply connected
components, without holes, handles, etc. In fact, if u is
large enough, A, will contain only one (small) simply
connected component, and so will have Euler character-
istic of one. In other words, for large u we can replace
(33) by

sgﬂr;f(X) >u =" o(A(f,M)) =1,

(34)

where we interpret “ <= to mean ‘asymptotically if
and only if’, and now ¢(A,) can, with high probability,
only take the values O or 1.

Taking probabilities on both sides of this equation,
and recalling that if X is a 0-1 random variable then
P{X =1} = E{X}, gives that

P{ sup f(x) > u} ~E{p(A,(f,M))}

xeM

for large u, or, equivalently, that the error term in (32)
should be small for large u.

This heuristic argument works well for most random
fields, and you can read more about it and other heuris-
tic arguments for random field extrema in [1]. However,
a rigorous result has been proven only for constant vari-
ance Gaussian fields. (Unfortunately, though, the above
heuristics have little to do with the proof.) We shall give
just one example of it.

Suppose f is Gaussian, isotropic, and with constant
unit variance. Then the error function in (32) is of the
form

u2(1+652)/27 (35)

error(u) = e~

where
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o (o) -5

8x%

x=0

This particular result is an example of a very general phe-
nomenon for unit variance Gaussian random fields, of ba-
sically the same form, but in which the exponent on the
right hand side of (35) is replaced by —u?(1+1n)/2, for
a n > 0 that is not always easy to identify. However, even
when 1 cannot be identified, this is a remarkable result.

To see why, consider, for example, the unit variance
stationary case with parameter space a N-dimensional
rectangle (although any set would do) in which case we
now know from (25) that we can rewrite the above as

xeT

N
IP{ sup f(x) > u} =Co¥ (u) +uNe 2 Z Ciu™,
=1

plus an error of order 0(e‘”2(1+”)/2) where the C; are
constants depending on the LKCs of 7" and the second
order spectral moments of f.

Why is this remarkable? If we think of the right hand
side above as a terminated version of an infinite power
series expansion, then it would be natural to expect that
the error term would be of the order of the ‘next’ term in
the expansion, and so of order u~'e’/2. However, we
have seen that this is not the case, and that the error is
actually exponentially smaller than this. Presumably this
theoretical result is behind the fact, well established in
practice, that the approximation of excursion probabili-
ties by expected Euler characteristics of excursion sets
works remarkably well. In general, numerical and other
evidence suggests that at levels at which the true excur-
sion probability is less than 0.10, the error in the Euler
characteristic approximation is no more than 5-10% of
the true probability.

6 On measuring, calculating and estimating
LKCs and Minkowski functionals

We now know that there are three main components that
appear in the new theory that has been discussed above.
The first are the Lipschitz-Killing curvatures of excursion
sets, which are random variables and can be computed
from data. We have not gone into detail as to how to do
this, and it is not always easy. However, it is easy for the
Euler characteristic ¢ (= %) and we shall see now how
to do this.

Suppose, which is almost always that case, that we see
our data not on a continuum, but rather on a rectangu-
lar lattice Lg, of edge size 8, so that rather than seeing
{f(x) }xem we see only { f(x) }xersnm- Then we also can-
not really see the true excursion sets Ap(f, M), but rather
rectanglar approximations to them of the form

AS(f.M) 2 {xeMNLs: f(x) €D}.
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If we join each point in A2(f,M) to those distance
0 from it (there are a maximum of 2N such points)
we construct an N-dimensional object, made up of N-
dimensional squares, (N — 1)-dimensional faces, and so
on, down to O-dimensional vertices (which are actually

the points of A3 (f,M). Denoting the number of such k-
dimensional faces by N,f, k=N,N-—1,...,0, it turns out
that

N
Q(AD(f, M) = Y (—1)VENY.
k=0

Not surprisingly, under mild regularity conditions, it also

turns out that @(AS(f,M)) — @(Ap(f,M)) as § — 0.
This is how one computes, or approximates, the Eu-
ler characteristic of excursion sets in practice. The re-
maining LKCs, particularly in the non-isotropic case, are
somewhat more complex. In the isotropic case, however,
one can use the definitions given in the Introduction to
compute them.

The remaining two components of the theory are the
LKC:s of the parameter space, measured with respect to
the Riemannian metric (29) as described at the end of
Section 4, and the Gaussian Minkowski functionals of
the hitting set D, described in Section 3.2. Computing ei-
ther of these can involve considerable knowledge of dif-
ferential geometry. The good news is that there are ways
around this.

First of all, the Gaussian Minkowski functionals de-
pend only on the hitting set D, and there are only a lim-
ited number of hitting sets that are in common usage.
Thus one can generally find what one needs already done
somewhere. An exhaustive list of known examples can
be found in Chapter 4 of [4], along with techniques for
developing any additional cases that might arise.

The case of the Lipschitz-Killing curvatures is some-
what different. If the random field is stationary, and the
parameter space 7 is a rectangle, then we are covered by
(25). A few other examples are given in Chapter 4 of [4].
All of these examples require estimation of the parame-
ters A; j» or, at least, of determinants of matrices made up
by them. A more direct way of estimating LKCs has been
proposed in [18]. The strength of this approach is that
there is actually no need for the practitioner to have any
serious depth of understanding of the geometrical mean-
ing of the .. Rather, they can be treated almost as nui-
sance parameters to be estimated from data via a rather
straightforward algorithm.

7 An application: Model identification

To conclude this review, I want to describe one rather in-
teresting and powerful application of the new formulae
of Section 4, and rather than describing the general prob-
lem, I shall do it via a particular example.
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The example

Suppose that we are given a real valued random field f
on R3, which we observe on the unit cube [0,1]3. Our
problem is that we are not certain what the distribution
of the field is. For simplicity, we shall assume that the
choices are Gaussian and 2, where both are assumed to
be stationary and isotropic.

Then one way to choose between the two is to cal-
culate, from the data, an empirical Euler characteristic
curve, given by

Place Figure 5 near here.

If the data is Gaussian, then the graph of @ should be
of the general form of Figure 3, where the actual height
and width of the graph will depend on the variance and
second spectral moment of f.

If the data is )2, then the graph of ¢ will have a differ-
ent form, closer to that of Figure 4, for example, which
recall is the expected Euler characteristic graph for a x>
random field with 5 degrees of freedom, and with vari-
ance and spectral moment chosen to match those of the
Gaussian random field of Figure 3.

The graphs of Figure 3 and Figure 4 are quite different,
and thus one should be able to see the same qualitative
differences in graphs of @ in the two cases. This indeed
is generally the case, and so we see that the expected Eu-
ler characteristic (EEC) curve provides a diagnostic tool
for differentiating between models.

One caveat should be made here, however, before we
continue. The significant differences between the Gaus-
sian and y? graphs would, of course, weaken consider-
ably were we to take the latter with a far higher degree
of freedom, say 30 or more. This, however, is far from
surprising, since in such a regime the central limit theo-
rem tells us that the not only are the differences between
Gaussian and )2 random variables rather small, the same

is true for Gaussian and ¥ random fields.

Returning to the 9552 example, suppose we were to
adopt what we claimed at the beginning of Section 2 was
the erroneous approach of ‘transforming to normality’
via a transformation as in (10). In fact, let us go a little
further now, assuming that we know our data is sampled
from a x2 random field f. Let Fs to be the (known) dis-

tribution function of a }2 random variable, and create a
new random field by setting

A

f) & @7 (Fs(f ()

In other words, we perform the ‘Gaussianisation’ of (10)
which, because of our assumptions, we can do without
data. _

Then the univariate distributions of f are standard
Gaussian, and so it would be impossible, looking merely

(36)
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at these, to distinguish between fand a Gaussian random
field. _
Figure 5 gives the EEC curve for f, with parameters

chosen so that f has the same variance and second spec-
tral moment of the Gaussian field of Figure 3. This curve
is quite different to the corresponding Gaussian one, both
in terms of its general shape and the rate at which it
reaches its asymptotes. Thus, while univariate marginal
distributions of the Gaussianised random field offer no
indication of inherent non-Gaussianity, the EEC curve
does.

This fact has often been used, particularly in the as-
trophysical literature, not only as a way to distinguish
between two models, but to search among models for the
correct one (e.g. [9, 20, 21]).

What we can learn from the example

After reading the above ‘application’, a referee asked a
number of pertinent questions that would probably be
of interest to any reader who works with spatially cor-
related data. Thus, it seems appropriate to close with a
paraphrased, concatenated version of his questions, along
with the best answers that I can provide to them.

1: What are the advantages of the above inferential
procedure to one based on standard distributional tests?

In a certain sense, a test for normality based on Euler
characteristics or, indeed, any of the LKCs, is a distribu-
tional test. The basic expectation formulae depend only
the variance of f and the variances and covariances of
its first order partial derivatives. If, for example, the ran-
dom field is assumed to be isotropic, as in the example
above, then the test described there is really only a test of
the joint normality or otherwise of the distribution of the
Gaussianised field and its first order derivatives.

What makes it somewhat different from standard tests
is how it tests for non-normality, by placing emphasis on
the geometric structures that are generated by the random
field. Whether or not this is a good thing will depend
very much on where one’s interest in the data is con-
centrated. If it is concentrated on geometry, we believe
that EEC techniques provide a more powerful approach
to testing for non-normality that standard tests. This be-
lief certainly seems to be shared, and put into practice, by
large parts of the brain mapping and astrophysics com-
munities for whom the analysis of shape has become an
important part of their inferential procedures.

Note, however, that if assumptions of neither isotropy
nor stationarity are made, then straightforward distribu-
tional tests are impossible to apply, since there are an un-
countable infinity of different distributions to be consid-
ered. In these cases a summary statistic of some sort must
be employed. The geometric approach suggested above
seems to be particularly suited to these scenarios.

2: How does the theory presented here convey infor-
mation about the long range properties of the random
field?

I have left this point to last, since it is an extremely
important one. The fact is that none of the formulae of
this paper are affected by, or descriptive of, long range
properties of the random field. Of course, all the formu-
lae for the means E{.Z;(A,(M, f)} depend on the size
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and shape of M, and, for example, they grow, in an addi-
tive fashion, as M grows. However, this growth does not
take into account the rate of decay, for example, of the
covariance function of f.

At first sight, this is rather surprising, but, in fact, it is
not something particularly new. Consider, for example,
the excursion probability (7). From the asymptotic equiv-
alence (8) (or any other technique for computing (7)) and
what we now know about the mean Euler characteristic
of excursions sets, it follows that, at least a high levels,
the excursion probability also does not depend on the
long range behaviour of the covariance function. There
are many other examples in the theory of Gaussian ran-
dom fields for which this kind of behaviour occurs, and
the geometric theory of this paper is just one more.

Is this a strength or a weakness? The answer, of
course, depends on what one is interested in. If long
range behaviour of covariance functions is important for
some other reason, then the theory of this paper has little
to offer to help in understanding or estimating them. On
the other hand, it is nice to know that there are many in-
teresting aspects of random fields that do not depend on
the decay rates of covariance functions. Indeed, it may
well be rather comforting, since such decay rates are one
of the hardest phenomena to accurately measure, in prac-
tice, from real data.

8 Acknowledgements and apologies

Throughout this review I have given few references and
very little detail as to the long history of this subject.
Two names stand out. One is Jonathan Taylor, whose fun-
damental contributions to the theory have already been
mentioned, and the second is Keith Worsley, who has
made more contributions to the application of the Eu-
ler characteristic approach to random fields than anyone
else I know. However, there are many other names that
deserved to be mentioned, and were not. I acknowledge
that I owe an apology to both these authors and the reader
for not mentioning them by name.

My justification for this oversight is two-fold. Firstly,
in a brief review article like this one it would be impos-
sible to even attempt to do credit to the history of the
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Fig. 1 The tube around a triangle.

Fig. 2 Two EEC curves E{¢ (A,)} for Gaussian fields in two dimensions
for different values of the second spectral moment A,. The horizontal axis
gives values of u and the vertical axis the EEC.

-s00

Fig. 3 EEC for a Gaussian field in three dimensions. Axes as for Figure 2.
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Fig. 5 EEC for a ‘normalised’ st field in three dimensions. Axes as for Figure 2.
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