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Preface

Before you start reading them, we should tell you something about what you
can expect to find in these lecture notes, and what you should not be looking
for.

First and foremost, you should keep in mind that what we have here was
written to be a companion for the Saint Flour Lectures, which cover twelve
hours of lecture time in eight meetings. This is sufficient time to be able give
a good introduction to a subject, but it is not enough time to either teach it
in depth or describe all its ramifications and applications. The notes reflect
both the challenge and limitation inherent in these parameters.

The second point to keep in mind is that the title of the notes and the
lectures is overly optimistic. When originally planning the lectures we had
ambitious plans regarding the material that we hoped to cover. Eventually we
managed to internalise the fact that there was only so much one could do in
twelve hours, and so the “smooth random functions” of the title are limited
to Gaussian, and Gaussian-related (to be defined later), random functions.
As you will see, “topological complexity” is also somewhat of a grandiose
over-statement. However, perhaps by the time you finish reading the notes,
especially Chapter 6, you will at least have a feeling for what we originally
had in mind.

Also related to the structure of these notes is the fact that in 2007 we
published a 450 page Springer monograph [8] Random Fields and Geometry
(hereafter RFG) which more or less covers the theoretical aspects of these
notes. Furthermore, we currently have on hand half of a second monograph
[9] that, when completed, will cover a wide range of applications. This one
will be called Applications of Random Fields and Geometry: Foundations and
Case Studies (hereafter ARFG). Despite the tragic loss of our ARFG co-author
Keith Worsley in February 2009, we plan still to complete this book, which
will also be published by Springer. At the moment the earlier chapters, which
include homework exercises for some of the material of these notes, can be
found on our web pages.
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Since this second volume will also probably grow to a size comparable to
its theoretical precursor, one wonders if we really can have anything new or
different to say in the 100 pages or so of these notes.

In some cases, we do. There have been developments of the theory since
the first monograph came out, and some of these are touched on here. In
particular, Section 4.10.1 describes a powerful, infinite dimensional, extension
of the Gaussian kinematic formula worked out in detail in [82]. Chapter 5 will
point you in the directions of applications, and will, hopefully, one day form
the core of ARFG. Finally in Chapter 6 there is a brief discussion of some
brand new results at the interface of random fields and algebraic topology. It
is these topics that originally motivated the title of these notes, but, somehow,
at Saint Flour there was not enough time to discuss them in any detail.

However, the main advantage of these notes is precisely that they are
neither as exhaustive nor, we hope, as exhausting, as the two monographs.

Our main aim here then will be to give a readable and easily accessible
introduction to an area that has been developing rapidly over the past few
years, without getting bogged down with too much technical detail. For the
missing details in the theory you can turn, for the most part, to RFG, and,
for more details on applications, to ARFG.

Our secondary aim is to motivate you to download the existing chapters
of ARFG and help us debug them, and, of course, to motivate you to order a
copy of RFG from Springer1.

Finally, we have some acknowledgments to make. The first is to the Saint
Flour scientific committee, for originally inviting RJA to give the course. RJA
delivered most of the lectures, but JET also carried some of the load. Adding
to this the fact that these notes are are heavily based on our joint monograph
RFG, the result is the current joint, yet again, product.

We are also grateful to the agencies that supported our research and writ-
ing during the last 2-3 years. In particular, JET thanks the National Sci-
ence Foundation (DMS-0906801), RJA thanks the Israel Science Foundation
(853/10) and both thank the Binational Science Foundation (2008262) and
the NSF for a SGER grant (also with Shmuel Weinberger) that had a lot to
do with getting Chapter 6 written.

Robert J. Adler Jonathan E. Taylor
Haifa, Israel Stanford, California
webee.technion.ac.il/people/adler stat.stanford.edu/∼jtaylo

1 By the way, the grandfather of both of these books was published in 1981 as
The Geometry of Random Fields [2], and after being out of print for many years
is newly available in the SIAM series Classics in Applied Mathematics. It is, of
course, rather dated, but also rather readable, because in those days its author
had not yet learnt how to make easy material look hard. Since then, he has.
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Introduction

Since you are a wise reader you certainly have, by now, read the Preface. So
you already knowl, in general, what these notes are about. This chapter has
some more details.

1.1 Random Fields on Stratified Manifolds

The “smooth random functions” of these notes are what we shall generally call
“random fields”, by which we mean random functions defined on parameter
spaces M richer than the real line R, where the parameter is generally taken
to be ‘time’, t. We shall still use t to denote the parameter, along with Latin
letters such as f and g to denote the random fields, but the typical M that
we have in mind will be a compact domain of RN , N > 1, such as the cube
IN

∆= [0, 1]N , or perhaps a manifold, such as the (N − 1)-dimensional sphere
of radius λ > 0, which we denote by Sλ(RN ). (We shall also write S(RN ) for
S1(RN ).)

The random function itself will generally take values in Rd, d ≥ 1, where
there is typically no connection between the dimensions N and d.

In addition, we shall often add to this setup a deterministic function F ,
from Rd to Rd′ , which we shall use to define a new random field, g : M →
Rd′ , so that we have the structure of Figure 1.1.1. Again, there need be no
connection between d and d′, although in most cases on interest d′ will be
one.

This general structure may at first seem a little strange. After all, why not
define g directly without the intermediate function F? The gain, as we shall
see later, is that very often it is possible to work, in this fashion, with quite
simple f and F , but generating a rather complicated g, whose distributional
properties would be difficult to derive directly.

The other thing that might strike you as a little strange is the shape of
the set M in Figure 1.1.1. After all, it is neither a simple cube nor a simple
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Fig. 1.1.1. A typical setting: f : M → Rd random, F : Rd → Rd
′

deterministic,
and g = F ◦ f : M → Rd

′
.

sphere. (In fact, it is really not even clear from the figure whether M is two or
three dimensional; viz. whether or not it has a non-empty interior. For what
follows, however, we shall assume that M does have an interior, and so is
3-dimensional.)

In order to handle parameter spaces that are able to include both domains
such as cubes, or simplicial complexes, with edges and corners, along with
domains which are smooth manifolds or are bounded by unions of such man-
ifolds, we shall generally work in the setting of stratified manifolds. These are
basically sets that can be partitioned into the disjoint union of manifolds, so
that we can write

M =
dimM⊔
j=0

∂jM, (1.1.1)

where each stratum, ∂jM , 0 ≤ j ≤ dim(M), is itself a disjoint union of a
number of j-dimensional manifolds. For the M of Figure 1.1.1, ∂3M is the
interior of M ; ∂2M the collection of its two-dimensional sides, some concave
and some convex; ∂1M is made up of the one-dimensional edges; and ∂0M
contains the corner vertices. In each case, boundaries are not included. Thus
∂2M includes neither the bounding edges, which are in ∂1M , nor the vertices,
which are in ∂0M .

Later we shall have more to say about regularity conditions for stratified
manifolds, but for the moment you will lose little if you restrict yourself to the
three special cases: M = IN , M = S(RN ), and M = B(RN ), where Bλ(RN )
is the ball of radius λ in RN and B(RN ) ∆= B1(RN ).

In fact, when we get around to proving things, you might want to assume
that M is a smooth manifold without boundary. This will make complicated
notation and long summations collapse into simple single term expressions.
For the main proof of the notes M will be a submanifold of a sphere.
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1.2 Topological Complexity

Topology is the study of ‘pure’ shape, as opposed to geometry, which might
be considered as adding considerations of size to those of shape. We shall be
concerned with both geometry and topology. As far as geometry is concerned,
the concepts that we shall require come from convex and integral geometry.
Topology itself splits into many sub-disciplines, the main two of which, from
our point of view, are differential topology and algebraic topology. Differential
topology has a lot to do with concepts such as curvature, which are local
objects, whereas algebraic topology tends to concentrate on global structures,
such as homology and homotopy groups.

A point at which all of these subjects meet is in studying the Euler, or
Euler-Poincaré, characteristic of an object. Euler characteristics will play an
important rôle in these notes, so it is worthwhile to take a little time to meet
them in a few of their guises.

Perhaps the most natural (and historically appropriate) way to start is to
look at the ring of convex sets in RN , CN , and to search for an integer valued
functional with the following two basic properties:

ϕ(M) =

{
0 if M = ∅,
1 if M 6= ∅ is convex,

(1.2.1)

and

ϕ(M1 ∪M2) = ϕ(M1) + ϕ(M2)− ϕ(M1 ∩M2), (1.2.2)

whenever M,M1,M2 ∈ CN . That is, ϕ is a finitely additive functional that
assigns the value one to convex sets .

An important result of integral geometry states that not only does a func-
tional possessing these two properties exist, but it is uniquely determined by
them. This functional is the Euler characteristic. One can do many computa-
tions from this definition alone, particularly if one is prepared to accept the
fact that such a functional can be defined on far more general classes of sets,
with the second part of (1.2.1) replaced by the reqirement that ϕ(M) = 1 if
M is homotopic to a ball.

To go a little further, suppose that M is a simplicial complex, or a triangu-
lation of a stratified manifold1. Then an alternative, but equivalent, definition
of the Euler characteristic of M is as the alternating sum

ϕ(M) =
dimM∑
j=0

(−1)jαj (M) , (1.2.3)

1 That is, we have a covering ofM by diffeomorphic images of simplices of dimension
no more than dim(M), such that, if two such images have a non-empty intersec-
tion, then the pre-images of the intersection must be full facets (sub-simplices)
of each of the original simplices. We shall abuse notation by writing M for both
the manifold and the triangulation
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where αj (M) is the number of j-dimensional facets in the simplicial complex
M or, respectively, its triangulation2.

While this definition of the Euler characteristic is algebraic, there is an-
other, based on Morse theory, which is quite different. For simplicity, suppose
that M is a C2 manifold (without boundary) in RN . Take an f ∈ C2(RN )
and consider its critical points, i.e. those points t satisfying ∇f(t) = 0. Then,
under mild regularity conditions on f that we shall meet later, another way
to define the Euler characteristic of M is to set

ϕ(M) =
dimM∑
j=0

(−1)jnj(M,f), (1.2.4)

where nj(M,f) is the number of critical points at which the Hessian of f has
j negative eigenvalues.

The representations (1.2.3) and (1.2.4) at first seem to have little in com-
mon, other than they both (not coincidentally) involve an alternating sum.
As there was an arbitrariness in (1.2.3) coming from the choice of triangula-
tion, so there is an arbitrariness in (1.2.4), this time coming from the choice
of f . Other differences between the two results are superficial. In particular,
whereas, for simplicity, we have written (1.2.4) only for manifolds without
boundary, it has a natural extension to stratified manifolds, in which the gen-
eralisations of the nj also count certain types of critical points of f restricted
to the ∂kM (cf. Section 3.8).

Yet another definition of the Euler characteristic of a set comes from dif-
ferential geometry, and is based on notion of local curvature. The key result
here is the Gauss-Bonnet, or Chern-Gauss-Bonnet Theorem. It has a long
and impressive history, starting in the early nineteenth century with simple
Euclidean domains. Names were added to the result as the setting became
more and more general. Here is a simple version, which holds in the setting of
compact, orientable, C2 Riemannian manifolds (M, g) of dimension N , with
Riemannian curvature tensor R and volume form Volg:

ϕ(M) =

{
(−1)N/2

(2π)N/2N !

∫
M

Trace(RN/2) Volg N even

0 N odd.
(1.2.5)

Again, there is a version for stratified manifolds. More importantly, however,
is the fact that this definition of the Euler characteristic is qualitatively dif-
ferent to the two we have seen so far. There is no longer any alternating sum,
and what is clearly a global qeometric quantity is now expressed in terms of
purely local properties of the manifold. Even more striking is the fact that the
2 Despite the fact that there is no uniqueness for triangulations and so the right

hand side of (1.2.3) would seem to depend on the triangulation, it is a basic theory
of algebraic topology that the Euler characteristic is well defined and independent
of the triangulation.
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whereas the right hand side of (1.2.5) depends of the Riemannian metric g
through both the curvature tensor and the volume form, the left hand side is
a purely topological measure that depends on neither of these. In fact, Gauss
was so impressed by this fact that he called his original version of the result
his Theorema Egregium (Remarkable Theorem), a description which is still
appropriate today.

There is also a representation of the Euler characteristic that has it roots
in convex geometry, growing out of a result known as Steiner’s formula [57, 71]
and leading, via the Weyl tube formula to an entire class of geometric quan-
tifiers which we shall call Lipschitz-Killing curvatures. To describe Steiner’s
formula, we first require the notion of a tube, of radius ρ > 0, around a set
M ⊂ RN . This is easily defined as

Tube(M,ρ) =
{
t ∈ RN : d(t,M) ≤ ρ

}
(1.2.6)

where d(t,M) ∆= infs∈M |t− s| is the usual Euclidean distance from the point
t to the set M .

Now let λN denote Lebesgue measure in RN . Then Steiner established
the existence of numbers L0(M), . . . ,LdimM (M), such that, for convex M ,

λN (Tube(M,ρ)) =
dimM∑
j=0

ωN−jρ
N−jLj(M), (1.2.7)

where

ωj = λj(B(0, 1)) =
πj/2

Γ
(
j
2 + 1

) (1.2.8)

is the volume of the unit ball in Rj . Weyl and others extended this result to
far more general sets M , although then (1.2.7) holds only for ρ < ρc, where
the critical radius ρc depends on the local convexity of M .

The numbers Lj(M) are known as the Lipschitz-Killing curvatures3 of M ,
and L0(M) is just another notation for the Euler characteristic of M .

We shall have much more to say about Lipschitz-Killing curvatures later
on, but, for the moment, you might like to use (1.2.7) to check that, for
Bλ(RN ), the N -dimensional ball of radius λ,

Lj
(
Bλ
(
RN
))

= λj
(
N

j

)
ωN
ωN−j

, (1.2.10)

3 To some they may be more familiar as versions of the Minkowski functionals,
which are given by

Mj(A) = (j! ωj)LN−j(A). (1.2.9)

Written in terms of the Minkowski functionals, (1.2.7) takes on the form of a
classic Taylor series expansion. What is amazing about it is that the expansion
is finite.
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for all 0 ≤ j ≤ N , while for the sphere Sλ(RN ),

Lj
(
Sλ
(
RN
))

= λj
(
N

j

)
2ωN
ωN−j

, (1.2.11)

if N − 1− j is even, and 0 otherwise.
A slightly less tidy, but similarly simple, calculation gives that, for N -

dimensional rectangles,

Lj
( N∏

1

[0, Tj ]
)

=
∑
j1...jk

Tj1 · · ·Tjk , (1.2.12)

where the sum is over the
(
N
k

)
distinct choices of k indices between 1 and N .

Note that, with the exception of the Euler characteristic L0(M), all of
the Lipschitz-Killing curvatures are dependent on the size of the set. In the
examples above it is clear that they scale nicely, in the sense that

Lj(λM) = λjLj(M), (1.2.13)

for all λ > 0 and all j, where λM = {x : x = λs for some s ∈ M}. This
scaling holds in general, and so the Lipschitz-Killing curvatures cannot be
topological invariants4 of M . In some sense, Lj(M) is a measure of the aver-
age j-dimensional cross-section of M , a fact that we shall formalise later via
Crofton’s Formula, (3.7.1).

The Lipschitz-Killing curvatures also appear in another fashion, in an
extremely important theorem due initially to Hadwiger [47] in a setting a
little more general than the convex ring and named after him. It states that if
ψ is a real valued function on nice classes of sets in RN , invariant under rigid
motions, additive (in the sense of (1.2.2)) and either continuous or monotone5,
then

ψ(M) =
N∑
j=0

cjLj(M), (1.2.14)

4 In fact, as we shall see, there are analogues of the Lipschitz-Killing curvatures
for sets M embedded in Riemannian manifolds, in which case, with the single
exception of L0(M), the Lj(M) all depend on the Riemannian metric.

5 Monotonicity is in the sense that, for all pairs M1,M2, either M1 ⊆ M2 ⇒
ψ(M1) ≤ ψ(M2) or M1 ⊆M2 ⇒ ψ(M1) ≥ ψ(M2). Although this seems a rather
standard requiremnt for a measure (and so for LN ) note that the individual Lj ,
j < N are not themselves monotone.

Continuity is also a rather delicate issue. Essentially, the metric taken between
sets is of the form

d (M1,M2) =

NX
j=0

aj

Z
Graff(N,N−j)

|L0 (M1 ∩ V )− L0 (M2 ∩ V )| dV,

for some constants aj , where, for notation, see Section 3.7.
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where c0, . . . , cN are (ψ-dependent) constants. Thus, studying intrinsic vol-
umes is equivalent to studying a far wider class of functionals on sets. We
shall apply this result on a number of occasions.

For a final definition of the Euler characteristic we move to a purely al-
gebraic interpretation. Thus, suppose that H0, . . . ,HdimM are the homology
groups of M , and that the dimension of Hk is the Betti number βk. Then

ϕ(M) =
dimM∑
j=0

(−1)jβj . (1.2.15)

This is an approach that we shall turn to only towards the end of these notes.
Although we have now seen four quite different definitions of Euler charac-

teristics, the truth is that we have have only uncovered the tip of a large ice-
berg of approaches, motivated by different classes of sets M , different branches
of geometry or topology, and different applications. Nevertheless, hopefully
we have begun to convince you that the Euler characteristic is a topological
characteristic that appears naturally in a wide range of settings, and, as such,
provides a good starting measure of topological complexity.

That this is indeed the case, and that after working with Euler charac-
teristics one sees natural extensions of basic results to far more sophisticated
measures of complexity, is a fact that you will hopefully appreciate by the
time you reach the end of the notes.

1.3 Random Fields and Complexity

There are many ways that one could think of for studying the topological
complexity of random fields, but clearly what all have in common is that one
needs to concentrate on aspects of the sample paths of the fields which are
not only intrinsically interesting but also mathematically tractable from both
topological and probabilistic viewpoints.

A natural place to start would be to look at the image of the parameter
space M , or subsets of it, under the mapping f : M → Rd. For example, if
M is a smooth manifold then the same will be true of f(M). In general, it
would be natural to describe the structure of f(M) in terms of the topological
structure of M , the probabilistic structure of f , and the dimensions dim(M)
and d. Despite the fact that this seems like such and obvious question, we are
not aware of any general results in this direction.

An inverse problem would be to look at sets in the parameter space M
over which the random field exhibits specific behaviour. This is something for
which are aware of many results, and describing them will form much of the
core of these notes. These objects are of intrinsic interest, partly because they
have many applications, and partly because they are analytically tractable and
lead to an elegant theory which has implications beyond the original setting.
We shall call the sets behind this theory excursion sets and define them as
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AD ≡ A(f,M,D) ∆= {t ∈M : f(t) ∈ D} ≡ M ∩ f−1(D), (1.3.1)

where D ⊂ Rd. When d = 1 and D is a positive half line, excursion sets are
often referred to as nodal domains or super-level sets, and we write, with some
ambiguity,

Au ≡ Au(f,M) ∆= {t ∈M : f(t) ≥ u} ≡ A(f,M, [u,∞)). (1.3.2)

There is a central theorem in these notes and, one way or another, ev-
erything else is related to it. We call it the Gaussian kinematic formula, for
reasons that we shall explain in a moment. While special cases appeared as
earlier as the mid 1970’s, the elegant geometric form in which it can be found
in these notes first appeared in Taylor’s 2001 McGill PhD thesis [79] and the
paper [80]. It has grown considerably in content and importance since then,
as we understand more and more of its structure and its applications. The
statement, for f = (f1, . . . , fd) : M → Rd, with component fields fj which
are independent, smooth, zero mean, unit variance, and Gaussian, and where
M and D ⊂ Rd are nice enough, is

E {Li (A(f,M,D))} =
dimM−i∑
j=0

[
i+ j
j

]
(2π)−j/2Li+j(M)Mγ

j (D). (1.3.3)

There is much here that needs explanation. The combinatorial oefficients
»
n
m

–
are known as flag coefficients and are defined by[

n
k

]
=

[n]!ωn
[k]! [n− k]!ωnωn−k

, [n]! = n!ωn. (1.3.4)

The Mγ
j , described and defined in Section 3.5 below, are known as Gaussian

Minkowski functionals. These, to a large extent, play the rôle of Lipschitz-
Killing curvatures in Gauss space and turn out to be rather important quan-
tities in their own right6.

The Lipschitz-Killing curvatures on both sides of (1.3.3) are computed
with respect to a specific Riemannian metric induced on M by the ran-
dom field f , in a way which we have yet to describe. Recall, however, that
L0(A) is the Euler-Poincaré characteristic, and so, when j = 0 in (1.3.3),
L0 (A(f,M,D)) is independent of any Riemannian structure.

The result (1.3.3) has a long history. If M is a simple interval [0, T ], f is
real valued and stationary, and D = {u}, then (1.3.3) is essentially the famous
6 In fact, they also have interesting infinite dimensional counterpart, described

briefly in Section 4.10.1 where (in honour of the fact that these notes cover lectures
given in France) we shall see how they can be expressed in terms of the operators
of the Malliavin calculus. This is not something that can be done for the Euclidean
LKCs.
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Rice formula, which gives the mean number of crossings of the level u by f ,
and dates back to 1939 [69] and 1945 [70]. This states that

E {# {t ∈ [0, T ] : f(t) = u}} = T
λ

1/2
2

π
e−u

2/2.

where λ2
∆= E{ḟ2(t)}.

Since the establishment of the original Rice formula there have been tens,
if not hundreds, of papers extending it in many ways. Much of this work is
summarised in the recent monograph of Azais and Wschebor [11], which is
close to the style of the original theory than are these notes.

In a different vein, back in the 1970’s Adler took a more geometric ap-
proach, and proved an early version of the Gaussian kinematic formula relying
only on integral geometry and some Morse theory. Furthermore, the sets M
were restricted to being N -dimensional rectangles and f was univariate and
stationary. The theory up until 1980 was summarised in [2].

During the 1990’s a series of papers by the late Keith Worsley and cowork-
ers appeared (eg. [87, 89, 90, 91]) that were important precursors to the general
theory of these notes. However, as already mentioned, it was in 2001 that the
modern theory began.

So much for a brief history. We have a long and interesting path to treck
before all the parts of (1.3.3) will make sense to us, let alone until we can
prove (a special case of) it. Before doing so, here are a few reasons why, apart
from mere intellectual curiousity, this treck might be worthwhile.

1.3.1 Statistical Implications

The general structure of (1.3.3) has significant implications for a class of
statistical problems out of the purely Gaussian scenario. As in Section 1.1
(cf. Figure 1.1.1) taking F : Rk → R to be nice, define the (typically non-
Gaussian) process

f(t) = F (g(t)) = F (g1(t), . . . , gk(t)), (1.3.5)

with g Gaussian as for (1.3.3). Then it follows immediately from (1.3.3) that

E {Li (A(f,M, [u,∞)))} (1.3.6)

=
dimM−i∑
j=0

[
i+ j
j

]
(2π)−j/2Li+j(M)Mγ

j (F−1[u,+∞)).

Non-Gaussian processes of the form (1.3.5) appear naturally in a wide
variety of statistical applications of smooth random fields (e.g. [4, 8, 9, 74, 87,
89, 90] with an excellent introductory review in [88]).

An additional, and extremely important, application of (1.3.3) lies in the
so called ‘Euler characteristic heuristic’ that, for a wide range of random fields
f ,
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t∈M

f(t) ≥ u
}
− E {L0 (A(f,M, [u,∞)))}

∣∣∣ ≤ error(u), (1.3.7)

where error(u) is of a substantially smaller order than both of the other terms
as u→∞. In the Gaussian case, this heuristic is now a well established theo-
rem, and the error term is known to be of order exp(−u2(1 + η)/2) for some
(often identifiable) η > 0, while both the probability and expectation are
of order udimM−1 exp(−u2/2) [81]. The ability to compute the expectation
therefore provides useful, explicit, approximations for the excursion probabil-
ity, which is not explicitly computable expect for a handful of very special
cases.

We shall have a lot more to say about the exceedence probability (1.3.7)
later, specifically in Section 2.4 and in Chapter 5 when we turn to applications.

1.3.2 Connections with Sample Path Behaviour

One of the main reasons these notes center around the Gaussian kinematic
formula is, to put it simply, that the formula exists.

This is no mean feat in an area in which closed form expressions are few
and far between. Consider, for example, the following random variables, all
defined for a real valued random field f :

• The number of connected components of the excursion set A(f,M, [u,∞)).
• The number of local maxima of f above a level u.
• The number of critical points of f above a level u.
• The exceedence probability P{supM f(t) ≥ u}.

For none of these do we have, nor are we ever likely to have, closed form expres-
sions, even under restrictive assumptions such as stationarity and isotropy.

On the other hand, let ψ(u) denote the expectation of any of the three
random variables listed above, or the exceedence probability. Then we shall
see later that, in every case, and in wide generality, it is true that

|E {L0 (A(f,M, [u,∞)))} − ψ(u)| → 0, as u→∞. (1.3.8)

In each case it is also possible to say something about the rate of convergence,
which almost always turns out to be of the same type as that described above
for (1.3.7).

The detailed, rigorous proofs of results such as (1.3.8) are purely analytic,
and rely on representing ψ(u) as a (usually high dimensional) integral coming
from a general Kac-Rice formula that we shall call an ‘expectation meta-
theorem’ and shall meet in Section 4.1.

However, there has to be more to these results than mere analytic coin-
cidence, and the asymptotic equivalence of all these expectations must also
have sample path explanations. We shall discuss these briefly in Section 5.1.

These equivalences, however, highlight the centrality and importance of
the Gaussian kinematic formula. There are many random variables arising in
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the study of random fields, many of which are related. But there is only one
family – the Lipschitz-Killing curvatures of excursion sets – which are fully
amenable (at least in terms of their expectations) to mathematical analysis.

1.3.3 Geometry

One of the basic results of integral and convex geometry is the so-called kine-
matic fundamental formula which, in its simplest form, states that for nice
subsets M1 and M2 of Rn,

(1.3.9)∫
Gn

Li (M1 ∩ gnM2) dνn(gn) =
n−i∑
j=0

[
i+ j
i

] [
n
j

]−1

Li+j(M1)Ln−j(M2).

Here Gn is the isometry group of Rn with Haar measure νn normalised so that,
for any x ∈ Rn and any Borel A ⊂ Rn, νn ({gn ∈ Gn : gnx ∈ A}) = Hn(A),
where Hn is n-dimensional Hausdorff measure. (See [51, 73] for Mj elements
of the convex ring or similar, and [16] for more esoteric Mj closer to the spirit
of these notes.)

Now reconsider (1.3.3). Taking (Ω,F ,P) as the probability space on which
f lives, (1.3.3) can be rewritten as

(1.3.10)∫
Ω

Li
(
M ∩ (f(ω))−1(D)

)
dP(ω) =

dimM−i∑
j=0

[
i+ j
j

]
(2π)−j/2Li+j(M)Mγ

j (D).

Written this way, it is clear on comparing (1.3.9) and (1.3.10) that the
Gaussian kinematic formula can be interpreted as a kinematic formula over
Gaussian function space, rather than over the isometry group on Euclidean
space. From this observation comes the name of (1.3.10) as the Gaussian
kinematic formula. The source of this ‘coincidence’, and its importance to
geometry, will slowly become clear as you progress through the notes.





2

Gaussian Processes

The theory of Gaussian processes and fields is rich and varied, and many ex-
cellent books have been written on the subject, among them Bogachev [15],
Dudley [33], Fernique [39], Hida and Hitsuda [49], Janson [52], Ledoux and Ta-
lagrand [60], Lifshits [61] and Piterbarg [68], not to mention RFG and another
old favourite of ours, another set of lecture notes, [3]. In particular, a new book
[11] by Jean-Marc Azäıs and Mario Wschebor has recently appeared that has
a lot of material similar, but generally complementary, to what interests us.

We have no intention to go into any detail in the current notes, however,
and so will take a quick route towards defining Gaussian processes on general
parameter spaces that will get us where we need to go with the minimum of
fuss. All you will need to know to follow this is some rather basic graduate
level probability, and the definition of the multivariate Gaussian distribution1.
We shall start, however, with a very simple example which requires nothing
beyond undergraduate probability and some innovative calculus, but which is
already extremely instructive.
1 Recall that a Rd valued random variable X = (X1, . . . , Xd) is said to be mul-

tivariate Gaussian if, for every α = (α1, . . . , αd) ∈ Rd, the real valued variable
〈α,X〉 =

Pd
i=1 αiXi is univariate Gaussian. In this case there exists a mean vec-

tor m ∈ Rd with mj = E{Xj} and a non-negative definite d×d covariance matrix
C, with elements cij = E{(Xi−mi)(Xj−mj)}, such that the probability density
of X is given by

φd(x) =
1

(2π)d/2|C|1/2
e−(x−m)C−1(x−m)′/2, x ∈ Rd, (2.0.1)

where |C| = det(C). We write this as X ∼ N(m,C), or X ∼ Nd(m,C) if we need
to emphasise the dimension, and also adopt the standard but heavily overworked
symbol φ to denote the density φ1 of a N(0, 1) random variable.
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2.1 The Cosine Process

Perhaps the grandfather of all smooth stochastic processes is the cosine ran-
dom process on R. It is defined as

f(t) ∆= ξ cosλt+ ξ′ sinλt, (2.1.2)

where ξ and ξ′ are uncorrelated, equidistributed, random variables and λ is a
positive constant.

It is elementary trigonometry to see that the cosine process can also be
written as

f(t) = R cos(λ(t− θ)), (2.1.3)

where R2 = ξ2 + (ξ′)2 ≥ 0 and θ = arctan(ξ/ξ′) ∈ (−π, π], from whence the
name ‘cosine process’. Assuming, for convenience, that E{ξ} = 0, we have
that the covariance function of f is given by

C(s, t) = E{f(s)f(t)}
= E{(ξ cosλs+ ξ′ sinλs)(ξ cosλt+ ξ′ sinλt)}
= E{ξ2} cos(λ(t− s)),

on using the fact that ξ and ξ′ are uncorrelated and equidistributed. Conse-
quently, regardless of the distribution of ξ, the cosine process is stationary.
(See Section 2.6 below for definitions of stationarity and isotropy.)

One of the nice aspects of the cosine process is that many things that are
either difficult or impossible to compute for more general processes can be
computed exactly, and from first principles, once some assumptions are made
on the distribution of ξ. We shall therefore now assume that ξ and ξ′ are
independent, Gaussian variables, with zero mean and common variance σ2.
As an example of what can be computed, consider, for u > 0, the exceedence
probability

P
{

sup
0≤t≤T

f(t) ≥ u
}
, (2.1.4)

which we met in the Introduction.
Under the Gaussian assumption, R2 has an exponential distribution with

mean 1/(2σ2), θ has a uniform distribution on (−π, π], and R and θ are
independent. We can use this information to compute some exceedence prob-
abilities directly, and start by defining the number of upcrossings by f of the
level u in time [0, T ],

Nu = Nu(f, T ) = #{t ∈ [0, T ] : f(t) = u and df(t)/d(t) > 0}.

It is trivial to see that the exceedence probability that we are after can
now be written as
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P
{

sup
0≤t≤T

f(t) ≥ u
}

= P {f(0) ≥ u}+ P {f(0) < u,Nu ≥ 1} (2.1.5)

= Ψ
(u
σ

)
+ P {f(0) < u,Nu ≥ 1} .

where

Ψ(x) ∆= 1− Φ(x) ∆=
1√
2π

∫ x

−∞
e−u

2/2 du. (2.1.6)

is the tail probability function for a standard Gaussian variable.
We now restrict attention to the case T ≤ π/λ, in which case, since f has

period 2π/λ, the event {f(0) ≥ u,Nu ≥ 1} is empty, implying that

P {f(0) < u,Nu ≥ 1} = P {Nu ≥ 1} .

Again using the fact that T < π/λ, note that Nu is either 0 or 1. In order
that it be 1, two independent events must occur. Firstly, we must have R > u,
with probability e−u

2/2σ2
. Secondly (draw a picture) θ must fall in an interval

of length λT , so that the final result is

P
{

sup
0≤t≤T

f(t) ≥ u
}

= Ψ
(u
σ

)
+

λT

2πσ
e−u

2/2σ2
, (2.1.7)

and the probability density of the supremum is given by

1
σ
φ
(u
σ

)
+
λTu

2πσ2
e−u

2/2σ2
. (2.1.8)

This computation was so simple, that one is tempted to believe that it
must be easy to extend to many other processes. In fact, this is not the case,
and the cosine process and field, which we shall meet in a moment, are the
only differentiable, stationary, Gaussian processes for which the exceedence
probabilities are explicitly known.

However, before we leave it, we can use the cosine process to motivate a
more general approach. Note first that since, as noted above, Nu is either 0
or 1 when T < π/λ, we can rewrite (2.1.5) as

P
{

sup
0≤t≤T

f(t) ≥ u
}

= Ψ
(u
σ

)
+ E{Nu}. (2.1.9)

Thus, rather than arguing as above, we could concentrate on finding an ex-
pression for the mean number of upcrossings.

More importantly, note that for any T , and, indeed, for any differentiable
random process, the above argument always gives

P
{

sup
0≤t≤T

f(t) ≥ u
}
≤ P {f(0) ≥ u) + E{Nu}. (2.1.10)
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Thus there would seem to be a close relationship between exceedence prob-
abilities and level crossing rates, that actually becomes exact for the cosine
process over certain intervals. In fact, since, for a one dimensional set, its Euler
characteristic is given by the number of its connected components, the expec-
tation in the right hand sides of both (2.1.9) and (2.1.10) could be written as
E{ϕ(Au(f, T ))}, where ϕ is the Euler characteristic.

2.2 The Cosine Field

The cosine field is a straightforward extension to RN of the cosine process,
and has the representation

f(t) = f(t1, . . . , tN ) ∆=
1√
N

N∑
k=1

fk(λktk), (2.2.1)

where each fk is the process on R given by

fk(t) = ξk cos t+ ξ′k sin t.

The λk are fixed, and the ξk and ξ′k are taken to be identically distributed
and uncorrelated.

Again, it is a simple exercise to check that the cosine field is both sta-
tionary and isotropic but it is somewhat harder to compute its exceedence
probabilities. To see what can be done, we restrict attention to the cosine
process on a rectangle of the form T =

∏N
k=1[0, Tk]. Then, given the structure

of the cosine field as a sum, it is immediate that

sup
t∈T

f(t) =
1√
N

N∑
k=1

sup
0≤tk≤Tk

fk(t).

If we assume that the ξk and ξ′k are all independent N(0, σ2), then the
suprema of the individual fk are also independent. Further assuming that
each Tk ∈ (0, π/λk], (2.1.7) and (2.1.8) give their individual distributions.
The distribution of the supremum of the cosine field is then the convolution
of these. The computations involved in actually doing the convolution are not
easy, but Piterbarg [68] showed that, if pN (u) is the density function of the
supremum, ϕ the standard Gaussian density and ϕ(k) its k-derivative, then
there are simple constants, Cnk, depending only on n and k, such that

pN (u) = ϕ
(u
σ

)
+

N∑
k=1

(−1)kCnkϕ(k)
(u
σ

) ∑
j1...jk

k∏
i=1

λjiTji
σ

. (2.2.2)

The inner sum here is over the
(
N
k

)
subsets of size k of {1, . . . , N}.
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Now assume that all the λj are identical. Then, appropriately rewritten,
this result will recall the Gaussian kinematic formula. Setting σ2 = 1 for
convenience, and recalling the definition of the Lipschitz-Killing curvatures of
rectangles at (1.2.12), we can write

pN (u) =
N∑
k=0

(−1)kC ′nk ϕ
(k)(u)λkLj(T ). (2.2.3)

Going a litle further, integrating over u, and applying some non-trivial asymp-
totics (cf. Section 2.5 of [68]) one finds that

(2.2.4)

P
{

sup
t∈T

f(t) ≥ u
}

= e−u
2/2

N∑
k=0

C ′′nkHk−1(u)λkLk(T ) + o
(
e−(1+η)u2/2

)
,

for some η > 0, The Hermite polynomials Hn are defined by

Hn(x) = n!
bn/2c∑
j=0

(−1)jxn−2j

j! (n− 2j)! 2j
, n ≥ 0, x ∈ R. (2.2.5)

where bac is the largest integer less than or equal to a and

H−1(x) ∆=
√

2πex
2/2Ψ(x), (2.2.6)

where Ψ is the tail probability (2.1.6) of a standard normal.
The easily checked fact that

dj

dxj
e−x

2/2 = (−1)jHj(x)e−x
2/2, (2.2.7)

along with (2.2.3) explains why Hermite polynomials arise in the exceedence
probabilities of the cosine field.

In fact, it turns out Hermite polynomials will arise in expressions for excee-
dence probabilities of all real valued C2 Gaussian fields. Furthermore, along
with the factor e−u

2/2, they can be written in terms of Gaussian Minkowski
functionals, a fact that we shall prove in Section 3.5. Thus the main term in
the right hand side of (2.2.4) is now very reminiscent of the right hand side
of the Gaussian kinematic formula.

However, even as a stand-alone result, it is already fascinating in that it
links exceedence probabilities to the geometry of the parameter space.

2.3 Constructing Gaussian Processes

Since the construction of cosine processes and fields as a sum of deterministic
functions with random amplitudes worked so well, we now try something
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similiar in general. Thus, with M a potential parameter space, choose a finite
or infinite set of functions ϕ1, ϕ2, . . . , ϕj : M → R satisfying only∑

j

ϕ2
j (t) < ∞, for all t ∈M. (2.3.1)

Let ξ1, ξ2, . . . be a sequence of independent, mean zero, variance 1, Gaussian
random variables, and define the random field f : M → R by

f(t) =
∑
j

ξjϕj(t). (2.3.2)

That the sum converges in L2, for each fixed t ∈ M , is a consequence of
(2.3.1). How f behaves, as a function of t, is another issue, that we shall turn
to later. Clearly, though, the smoother the ϕj are, the better behaved f will
be.

The mean of f is zero, and its covariance function is given by

C(s, t) = E{f(s)f(t)} =
∑
j

ϕj(s)ϕj(t). (2.3.3)

So we have seen how to go from a sum like (2.3.2) to a covariance function.
Usually, however, Gaussian processes are defined by their covariance functions,
rather than vice versa, so let’s make a couple of calculations and then try to
work backwards. Firstly, define a class of functions

S =
{
u : M → R : u(·) =

n∑
i=1

aiC(si, ·), ai real, si ∈M, n ≥ 1
}
. (2.3.4)

Define an inner product on S by

(u, v)H =
( n∑
i=1

aiC(si, ·),
m∑
j=1

bjC(tj , ·)
)
H

(2.3.5)

=
n∑
i=1

m∑
j=1

aibjC(si, tj).

It is easy to check that if u ∈ S, then the following unusual property holds:

(u(·), C(t, ·))H = u(t). (2.3.6)

This is known as the reproducing kernel property. The completion of S under
this above inner product is known as the reproducing kernel Hilbert space
(RKHS) of f , and all its elements also satisfy the reproducing property.

What is most interesting in this construction is that it also works in the
other direction. That is, given a positive definite function C on a space M , one
can define the completion of the space S of (2.3.4) under the inner product of
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(2.3.5), find a an orthonormal basis {ϕk} for H(C) and define the Gaussian
process (2.3.2). This will have C as its covariance function. The RKHS is now
associated with C rather than f , and is denoted by H(C).

For further details see RFG (or virtually any of the other texts mentioned
at the beginning of this chapter) where you will also find a proof of the follow-
ing, harder and much deeper, result, which holds under the implicit assump-
tion, assumed throughout these notes, that we are dealing only with separable
random processes2.

Theorem 2.3.1. Suppose that C is a bounded, positive definite function, con-
tinous on M ×M , and that

sup
s,t∈M

∣∣C(s, s) + C(t, t)− 2C(s, t)
∣∣ < ∞. (2.3.7)

Let f be defined from C as above. Then f is a.s. continuous, if, and only if,
the sum (2.3.2) converges uniformly on M , with probability one.

For the French among you, here is an (almost familiar) example. The Brow-
nian sheet is the zero mean, Gaussian, random field on the positive orthant
[0,∞)N with covariance function

E{W (s)W (t)} = (s1 ∧ t1)× · · · × (sN ∧ tN ). (2.3.8)

Replacing each j in the above sums by a multi-index j = (j1, . . . , jN ), it is
then not too hard to check that the ϕj for W are given, for W restricted to
[0, 1]N , by

ϕj(t) = 2N/2
N∏
i=1

2
(2ji + 1)π

sin
(

1
2 (2ji + 1)πti

)
.

When N = 1, W is the completely familiar Brownian motion. The corre-
sponding expansion is due to Lévy, and the corresponding RKHS is known as
Cameron-Martin space.

The message of this section should, by now, be clear. When dealing with
continuous Gaussian processes, we lose no generality whatsoever by treating
them as sums of deterministic functions with independent Gaussian coeffi-
cients. This will be important throughout these notes.
2 Recall that a real valued random process is called separable if there exists a

countable dense subset D of M and a fixed event N with P{N} = 0 such that,
for any closed B ⊂ R and open I ⊂ T ,

{ω : f(t, ω) ∈ B, ∀t ∈ I} ∆ {ω : f(t, ω) ∈ B, ∀t ∈ I ∩D} ⊂ N,

where ∆ denotes the usual symmetric difference operator.
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2.4 The Canonical Process on S(Rl)

There is a school of thought that takes the basic ideas of the previous section
even further. Note that, for any t ∈M , the sequence ϕ̃(t) = {ϕ1(t), ϕ2(t), . . . }
belongs to `2. (cf. (2.3.1).) Consider the image of M in `2 under the mapping
t→ x = ϕ̃(t), denote it by B, and define a new Gaussian process f̃ by setting

f̃(x) = f
(
ϕ̃−1(x)

)
, (2.4.1)

assuming always that ϕ is one to one3. Note that

E
{
f̃(x)f̃(y)

}
= E

{
f
(
ϕ̃−1(x)

)
f
(
ϕ̃−1(y)

)}
(2.4.2)

=
∑
j

ϕj
(
ϕ̃−1(x)

)
ϕj
(
ϕ̃−1(y)

)
=
∑
j

xjyj

= 〈x, y〉`2 .

In other words, there is really only one Gaussian process. It is defined on a
subset of `2 and its covariance function is the natural inner product on `2. It
is known as the isonormal process , and all of its properties must be properties
only of the parameter set B, and so accessible via the techniques of Banach
spaces.

While we shall not exactly adopt this approach, and, to some extent, it
would fail us if we did, it will be particularly helpful in certain special cases.

In particular, suppose that f has constant variance, which for notational
simplicity we take to be one, and, somewhat more restrictively, that the ex-
pansion (2.3.2) is finite. Consequently,

f(t) =
l∑

j=1

ξjϕj(t), (2.4.3)

for some 1 ≤ l <∞ and

k∑
j−1

ϕ2
j (t) = E

{
f2(t)

}
= 1. (2.4.4)

3 This is actually a perfectly reasonable assumption. If there are two different points
s, t ∈M mapping to the same point in S(Rl), then we must have

E
˘

[f(t)− f(s)]2
¯

=
X̀

1

[ϕj(t)− ϕj(s)]2 = 0,

which implies that f(t) and f(s) are, almost surely, identical, and so one of the
points s, t can be dropped from the parameter set.
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Thus, the set B = ϕ̃(M) of the previous section is now embedded in S(Rl), the
unit sphere of Rl, and the random field defined on it can be easily extended
to the entire sphere. The corresponding field is known as canonical (isotropic)
process on S(Rl). It has covariance C(s, t) = 〈s, t〉, and can be realised as

f̃(t) =
∑̀
j=1

tjξj . (2.4.5)

The isotropy comes from the fact that C(s, t) is function of only the (geodesic)
distance between s and t. (cf. Section 2.6 for a definition and discussion of
isotropy.)

The diagram of Figure 1.1.1 can now be modified somewhat. In fact, if
we take d independent copies of f and f̃ so that now f = (f1, . . . , fd) and
f̃ = (f̃1, . . . , f̃d), we can write

f(t) = f̃ (ϕ̃(t)) =
(
f̃ ◦ ϕ̃

)
(t).

The picture is now as in Figure 2.4.1, where we have neglected the final map-
ping F in Figure 1.1.1.

Fig. 2.4.1. The new setting with the canonical process on S(R`) intervening.

It turns out that for many purposes it suffices to work with the second
half of the figure, from ϕ̃→ Rd. In the following two subsections we shall see
two examples of this.

2.4.1 The Canonical Processes and Exceedence Probabilities

We are now going to look at the exceedence probabilities and continue the
process of connecting them to geometry. The underlying technique is known
as the tube method and has its roots in a pair of papers by Hotelling [50] and
Weyl [86] in 1939. In the setting in which we shall apply it, it was developed
primarily in [53, 58, 77].

Retaining the notation of the previous section, it is trivial that
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sup
t∈M

f(t) ≡ sup
x∈eϕ(M)

f̃(x), (2.4.6)

so that in computing exceedence probabilities for unit variance, finite expan-
sion Gaussian fields, we can concentrate first on treating only the canonical
process over subsets of S(Rl). Thus, for the moment, let f be the canonical
process on S(Rl), and let M ∈ S(Rl) be a nice set. Adopting the representa-
tion (2.4.5), we write f(t) as 〈ξ, t〉, for ξ ∼ N(0, I`×`) and t ∈ S(Rl).

Then we can argue as follows, writing P|ξ| for the distribution of |ξ|:

P
{

sup
t∈M

ft ≥ u
}

=
∫ ∞

0

P
{

sup
t∈M

ft ≥ u
∣∣∣ |ξ| = r

}
P|ξ|(dr)

=
∫ ∞

0

P
{

sup
t∈M
〈ξ, t〉 ≥ u

∣∣∣ |ξ| = r

}
P|ξ|(dr)

=
∫ ∞
u

P
{

sup
t∈M
〈ξ, t〉 ≥ u

∣∣∣ |ξ| = r

}
P|ξ|(dr)

=
∫ ∞
u

P
{

sup
t∈M
〈ξ/r, t〉 ≥ u/r

∣∣∣ |ξ| = r

}
P|ξ|(dr).

(2.4.7)

Consider the integrand here. Since ξ is multivariate Gaussian, it is standard
fare that the vector ξ/|ξ| is uniformly distributed on S(Rl), independently of
|ξ|, which is distributed as the square root of a χ2

l random variable. If we
now write ηl to denote the the uniform measure over S(Rl), we can rewrite
the integrand as a simple volume computation, once we take a moment to
consider tubes on spheres.

Our definition (1.2.6) of tubes extends from the simple Euclidean setting
to subsets of spheres by adopting the standard geodesic metric on S(Rl) given
by

τ(s, t) = cos−1 (〈s, t〉) .

Thus the tube of radius ρ around a closed set M ∈ S(Rl) is given by

Tube(M,ρ) =
{
t ∈ S(Rl) : τ(t,M) ≤ ρ

}
=
{
t ∈ S(Rl) : ∃ s ∈M such that 〈s, t〉 ≥ cos(ρ)

}
=
{
t ∈ S(Rl) : sup

s∈M
〈s, t〉 ≥ cos(ρ)

}
.

(2.4.8)

With this behind us, we can now continue the development of (2.4.7) to
obtain

P
{

sup
t∈M

ft ≥ u
}

=
∫ ∞
u

ηl
(
Tube(M, cos−1(u/r))

)
P|ξ|(dr) (2.4.9)

Thus, the exceedence probability that we seek is weighted average of the
volume of tubes around M of varying radii, and if we could compute
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ηl (Tube(M,ρ))

for all ρ ≤ 1 we would, basically, be done, since the averaging, over the square
root of a χ2

l random variable is, in principle, straightforward.
This approach – almost – works.
Firstly, not surprisingly, there are analogues of Steiner’s formula (1.2.7),

now called a tube formula, for subsets of spheres, with the Lipschitz-Killing
curvatures appearing in the Euclidean case replaced by their spherical coun-
terparts. We shall treat these in some detail in Chapter 3.4.2, but, for the
moment, let us write them as L1

j (M) so that, assuming the existence of a
tube formula, (2.4.9) becomes

P
{

sup
t∈M

ft ≥ u
}

=
dimM∑
j=0

C`jL1
j (M)

∫ ∞
u

(
cos−1(u/r))

)`−j P|ξ|(dr),

=
dimM∑
j=0

C`jL1
j (M)G`j(u) (2.4.10)

for some identifiable constants C`j and functions G`j . Note that the final
expression here is starting to take on the form of the right hand side of the
Gaussian kinematic formula.

Where this argument breaks down is that the tube formula only works for
small enough ρ or, in our case, small enough r. If r is large in the integrand of
(2.4.7) then the tube around M has radius close to π/2, and it becomes easy,
and, indeed, typical, for the tube to intersect itself ‘on the other side’ of the
sphere in which it is embedded. Once a self-intersection of this kind occurs,
tube formulae are no longer valid.

One way around this, which we shall not adopt in these notes, is to note
that since the problems arise only for large r, and these have small probability
under P|ξ|, one can ignore the tail of the integral, in a u-dependent fashion,
and estimate the error involved in doing so. Then, however, (2.4.10) becomes
an approximation rather than an exact result. We prefer to use the Euler
characteristic approximation of (1.3.7) and will justify it later. In most cases,
the two approaches yield identical approximations (cf. [78].)

The second problem with approaching everything via the canonical process
on the sphere is that most random fields do not live in the sphere, and although
the mapping from M → ϕ̃(M) is natural one, in the final analysis one would
like to have answers that depend not on the structure of ϕ̃(M), but rather on
the structure of M and the covariance structure of f . This is, in fact, not too
hard to do, and we shall see later how to relate the L1

j (ϕ̃(M)) to the Lj(M).
The final problem with this approach, however, is highly non-trivial: Not

all random fields have orthogonal expansions with only a finite number of
terms. In fact, this is the exception rather than the rule. For example, no
isotropic random field on RN has a finite expansion! Nevertheless, the isonor-
mal process on the sphere turns out to be the key example for generating
results for general processes, as we shall see later.
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2.4.2 The Canonical Process and Geometry

Returning now to the original random field f onM , consider how the excursion
sets of f relate to those of f̃ . That is, what is the relation between

AD = {t ∈M : f(t) ∈ D} and ÃD = {x ∈ ϕ̃(M) : f̃(x) ∈ D}?

The first thing to notice is that since ϕ̃ is one-one (already assumed) and if we
assume that it is C2 or smoother (in fact, it will always be at least C4 for us)
then the fact that ϕ̃ is a diffeomorphism implies that the Euler characteristics
of AD and ÃD will be identical. Consequently,

E
{
L0

(
AD
)}

= E
{
L0

(
ÃD
)}
, (2.4.11)

so that if we can compute the expected Euler characteristics of excursion
sets for the canonical process on spheres, then we can, at least in principle,
compute them for all Gaussian random fields with finite expansions.

Of course, we shall still face the same two problems that we faced above.
The answers will depend on the structure of ϕ̃(M), rather than on the struc-
ture of M and the covariance structure of f , and they will only hold for
random fields with finite expansions.

Furthermore, it is not at all clear if one can extend (2.4.11) to Lipschitz-
Killing curvatures other than the Euler characteristic. For example, it is cer-
tainly not true in general that

LN
(
AD
)
≡ HN

(
AD
)

= HN
(
ÃD
)
≡ LN

(
ÃD
)
,

where HN (AD) is the Euclidean volume of AD but HN (ÃD) is the surface
area of ÃD as a subset of the sphere. That there is nevertheless a way to
obtain the general Gaussian kinematic formula, which gives an expression for
means of all the Lj(AD) from a parallel result for the canonical process, is one
of the mysteries that will be unravelled as you proceed through these notes.

2.5 The Basic Theory of Gaussian Fields

To make the lecture course for which these notes were prepared complete and
self-contained, we would have needed another 24 hours or so to give a mini-
course on Gaussian processes. Thus, for example, if you look at RFG (and by
now you should have ordered a personal copy from Springer) you will see that
the first third of the book is devoted to this material.

Clearly this was not possible. On the other hand, we do need some results
from the general theory, and some specific moment results, for later use, and so
they are collected in the following sections, with no attempt to prove anything.
Everything is proven in RFG in full detail.
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In fact, if you are reading through these notes by yourself, and have an
impatient nature, you can actually skip these sections for now, go directly to
the geometry of Chapter 3, and return later, as needed.

We should really begin by actually defining real valued Gaussian (random)
fields or Gaussian (random) processes, something which have not actually done
yet, as being a random fields for which the (finite dimensional) distributions
of (ft1 , . . . , ftn) are multivariate Gaussian for each 1 ≤ n < ∞ and each
collection (t1, . . . , tn) ∈Mn.

Since multivariate Gaussian distributions are determined by means and
covariances, it is immediate that Gaussian random fields are determined by
their mean and covariance functions defined, respectively, by

m(t) = E{f(t)} (2.5.1)

and

C(s, t) = E {(f(s)−m(s)) (f(t)−m(t))} . (2.5.2)

In fact, this is one of the main reasons, beyond ubiquitous but not always
justified appeals to the central limit theorem, that Gaussian processes are
such popular and useful choices for models for random processes on general
spaces.

2.5.1 Regularity for Gaussian Process

We have already spoken about continuous and differentiable fields, but have
said nothing about conditions that ensure this. In the Gaussian case, every-
thing is dependent on the size of the parameter space, which we shall measure
via the canonical metric4.

The canonical metric, d, of a zero mean Gaussian field on a topological
space M , is defined by setting

d(s, t) ∆=
[
E
{(
f(s)− f(t)

)2}] 1
2 , (2.5.3)

in a notation that will henceforth remain fixed5. A ball in this metric, of radius
ε and centered at a point t ∈M is denoted by

Bd(t, ε)
∆= {s ∈M : d(s, t) ≤ ε} . (2.5.4)

Assume that M is d-compact, in the sense that
4 There is also a more powerful approach based on the notion of majorising mea-

sures which we shall not adopt. For information on this approach see RFG and
the far more serious treatment in [60]

5 Actually, d is only a pseudo-metric, since although it satisfies all the other de-
mands of a metric, d(s, t) = 0 does not necessarily imply s = t.
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diam(M) ∆= sup
s,t∈M

d(s, t) <∞. (2.5.5)

Fix ε > 0 and let N(M,d, ε) ≡ N(ε) denote the smallest number of d-balls of
radius ε whose union covers M . Set

H(M,d, ε) ≡ H(ε) = ln (N(ε)) . (2.5.6)

Then N and H are called the (metric) entropy and log-entropy functions for
M (or f).

Here then is the main result about Gaussian continuity and boundedness,
due originally, more or less in the form given below, to Richard Dudley [31,
32]. It is not the latest word in the topic, but it will more than suffice for
our purposes. Note how the topological and geometric structure of M blend
together with the covariance structure of f to give a measure, the metric
entropy, which determines everything in this result.

This blending of the geometry of the parameter space together with a
metric derived from the random field will also lie at the heart of the Gaus-
sian kinematic formula, although it will be different geometry and a different
metric.

Theorem 2.5.1. Let f be a centered Gaussian field on a d-compact M , d the
canonical metric, and H the corresponding log-entropy. Then there exists a
universal constant K such that

E
{

sup
t∈M

ft

}
≤ K

∫ diam(M)

0

H1/2(ε) dε, (2.5.7)

and

E {ωf,d(δ)} ≤ K
∫ δ

0

H1/2(ε) dε, (2.5.8)

where

ωf,d(δ)
∆= sup
d(s,t)≤δ

|f(t)− f(s)| , δ > 0, (2.5.9)

Furthermore, there exists a random η ∈ (0,∞) and a universal constant K
such that

ωf,d(δ) ≤ K
∫ δ

0

H1/2(ε) dε,

for all δ < η.

A complement to this result states that f is also stationary, then

f is a.s. continuous on M ⇐⇒ f is a.s. bounded on M (2.5.10)

⇐⇒
∫ δ

0

H1/2(ε) dε < ∞, ∀δ > 0.

For necessary and sufficient conditions in the general case one needs to turn
to the notion of majorising measures mentioned above.
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2.5.2 Gaussian Fields on RN

The entropy conditions above yield very simple sufficient conditions for conti-
nuity of centered Gaussian fields on compact sets M of RN . In fact, it is easy
to check that, defining

p2(u) ∆= sup
|s−t|≤u

E
{
|fs − ft|2

}
, (2.5.11)

a.s. continuity and boundedness follow if, for some δ > 0, either∫ δ

0

(− lnu)
1
2 dp(u) <∞ or

∫ ∞
δ

p
(
e−u

2
)
du <∞. (2.5.12)

Furthermore, there exists a constant K ′, dependent only on the dimension N ,
and a random δo > 0, such that, for all δ < δo,

ωf (δ) ≤ K ′
∫ p(δ)

0

(− lnu)
1
2 dp(u), (2.5.13)

where the modulus of continuity ωf is as in (2.5.9), but taken with respect to
the usual Euclidean metric rather than the canonical one. A similar bound,
in the spirit of (2.5.8), holds for E{ωf (δ)}.

A sufficient condition for either integral in (2.5.12) to be finite is that, for
some 0 < K <∞ and α, η > 0,

E
{
|fs − ft|2

}
≤ K

|log |s− t| |1+α ,

for all s, t with |s− t| < η. Related conditions hold on the spectral density in
the stationary case. See RFG for details.

In practical situations, it is rare indeed that one even gets close to the
logarithmic behavior of (2.5.14). The more common situation is that the co-
variance function has a power series representation of the form

C(s, t) = C(t, t) + (t− s)Λt(t− s)′ + o
(
|t− s|2+δ

)
, (2.5.14)

for |t− s| small and some δ > 0, or, in the stationary case

C(t) = C(0) + tΛt′ + o
(
|t|2+δ

)
, (2.5.15)

for t in the neighborhood of the origin. The matrices Λt and Λ are N ×N and
positive definite.

2.5.3 Differentiability

Since we shall also be requiring that our random functions are a.s. C2, a few
words on this condition are also in order. Firstly, unlike continuity, which
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requires nothing of the parameter space M other than it have a topology (so
one can talk about continuity) differentiability requires that M itself has a
differentiable structure. For the moment, we limit ourselves to RN with its
usual structure.

It then turns out that, at least in the Gaussian scenario, differentiability
can be handled within the framework of continuity since derivatives, if they
exist, must still be Gaussian. Since this is an important observation, that has
been missed by many authors in the past, we shall deviate from the policy of
this section and actually give details of how to do things.

To start, we need to define L2 derivatives. Choose a point t ∈ RN and a
sequence of k ‘directions’ t′1, . . . , t

′
k in RN , and write these as t′ = (t′1, . . . , t

′
k).

We say that f has a k-th order L2 partial derivative at t, in the direction t′,
if the limit

Dk
L2f(t, t′) ∆= lim

h1,...,hk→0

1∏k
i=1 hi

∆kf (t, t′, h) (2.5.16)

exists in mean square, where h = (h1, . . . , hk). Here ∆kf(t, t′, h) is the sym-
metrized difference

∆kf(t, t′, h) =
∑

s∈{0,1}k
(−1)k−

Pk
i=1 si f

(
t+

k∑
i=1

sihit
′
i

)
and the limit in (2.5.16) is interpreted sequentially, i.e. first send h1 to 0, then
h2, etc. Note that if f is Gaussian then so are its L2 derivatives, when they
exist.

By choosing t′ = (ei1 , . . . , eik), where ei is the vector with i-th element 1
and all others zero, we can talk of the mean square partial derivatives

∂k

∂ti1 . . . ∂tik
f(t) ∆= Dk

L2f (t, (ei1 , . . . , eik)) (2.5.17)

of f of various orders.
Moving now to almost sure differentiability, first endow the space RN ×

⊗kRN with the norm

‖(s, s′)‖N,k
∆= |s|+ ‖s′‖⊗kRN = |s|+

( k∑
i=1

|s′i|2
)1/2

,

and write BN,k(y, h) for the ball centered at y = (t, t′) and of radius h in the
metric induced by ‖ · ‖N,k. Furthermore, write

Mk,ρ
∆= M × {t′ : ‖t′‖⊗kRN ∈ (1− ρ, 1 + ρ)}

for the product of M with the ρ-tube around the unit sphere in ⊗kRN . This
is enough to allow us to formulate
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Theorem 2.5.2. Suppose f is a centered Gaussian random field on an open
M ∈ RN , possessing k-th order partial derivatives in the L2 sense in all
directions everywhere inside M . Suppose, furthermore, that there exists 0 <
K <∞, and ρ, δ, h0 > 0 such that for 0 < η1, η2, h < h0,

E
{[
η−k1 ∆kf(t, t′, η11)− η−k2 ∆kf(s, s′, η21)

]2}
(2.5.18)

< K
∣∣ ln (‖(t, t′)− (s, s′)‖N,k + |η1 − η2|

)∣∣−(1+δ)
,

for all

((t, t′), (s, s′)) ∈Mk,ρ ×Mk,ρ : (s, s′) ∈ BN,k((t, t′), h),

where ηj1 denotes the k-vector all of whose elements are ηj. Then, with prob-
ability one, f is k times continuously differentiable.

Proof. Recalling that we have assumed the existence of L2 derivatives, we
can define the Gaussian field

f̂(t, t′, η) =

{
∆kf(t, ηt′) η 6= 0,
Dk
L2f(t, t′) η = 0,

where Dk
L2f is the mean square derivative (2.5.16). This process is defined

on the parameter space M̂
∆= Mk,ρ × (−h, h), an open subset of the finite

dimensional vector space RN ×⊗kRN × R, with norm

‖(t, t′, η)‖N,k,1 = ‖(t, t′)‖N,k + |η|.

Whether or not f is k times differentiable on M is clearly the same issue as
whether or not f̂ is continuous in M̂ , with the issue of the continuity of f̂
really being only on the hyperplane where η = 0. But this puts us back into
the setting of the previous subsection, and it is easy to check that condition
(2.5.14) there translates to (2.5.18) in the current scenario. 2

As for continuity, it is rare in practice to get close to the upper bound in
(2.5.18), and this condition will easily be satisfied if, in analogy to (2.5.14)
and (2.5.15), the covariance function has a Taylor series expansion of up to
order 2k with a remainder of o(|h|2k+η) for some η > 0.

2.6 Stationarity, Isotropy, and Constant Variance

Although we have already met both stationarity and isotropy more than once,
the time has now come to define them properly and list some of their basic
properties.
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We start by noting that a random field on a general parameter space M is
called (second order) stationary, or homogeneous, if it has constant means and
the covariance function C(s, t) is a function of the difference s− t only. With
some abuse of notation, we shall write C(s, t) = C(s− t).

Of course, if M is general, there is no reason why s, t ∈M implies that s−t
is also in M , and so it is necessary to assume that M has a group structure.
In these notes, when discussing stationarity, we shall be concerned only with
the cases M = RN or M = Sλ(RN ). Note that for Gaussian processes this
definition of stationarity also implies what is known as strong stationarity,
which is that the finite dimensional distributions of the field are invariant
under translations.

A stationary field is called isotropic if the covariance function is direction
independent, in the sense that C(t) = C(|t|).

We now restrict attention to random fields on RN . There are two basic
results in the the theory of stationary processes. One is known as the spectral
distribution theorem and one as the spectral representation theorem. The first,
which is the only one that we shall need in these notes, is due originally
to Bochner in a non-probabilistic setting. For fields on RN it states that
if a continuous function C : RN → R is non-negative definite, and so the
covariance function of a stationary random field, if and only if there exists a
finite measure ν on the Borel σ-field BN of RN such that

C(t) =
∫

RN
ei〈t,λ〉 ν(dλ), (2.6.1)

for all t ∈ RN .
The measure ν is called the spectral measure and, since C is real, must

be symmetric, in the sense that ν(A) = ν(−A) for all A ∈ BN . Similarly,
if C is isotropic then ν must be spherically symmetric, in the sense that
ν(A) = ν(ΘA) for all A ∈ BN and any rotation Θ.

2.6.1 Spectral Moments and Derivatives of Random Fields

Given the the spectral representation (2.6.1) we define the spectral moments

λi1...iN
∆=
∫

RN
λi11 · · ·λ

iN
N ν(dλ), (2.6.2)

for all (i1, . . . , iN ) with ij ≥ 0. Note that, since ν is symmetric, the odd
ordered spectral moments, when they exist, are zero; i.e.

λi1...iN = 0, if
N∑
j=1

ij is odd. (2.6.3)

Spectral moments turn out to be closely related to the variances and co-
variances of derivatives of random fields.
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Recalling the notion of mean square partial derivatives from (2.5.17) it is
a straightforward exercise to check that, in general, their covariance functions
are be given by

E
{

∂kf(s)
∂si1∂si1 . . . ∂sik

∂kf(t)
∂ti1∂ti1 . . . ∂tik

}
=

∂2kC(s, t)
∂si1∂ti1 . . . ∂sik∂tik

. (2.6.4)

When f is stationary, the corresponding variances and covariances also
have a nice representation in terms of spectral moments. For example, if f
has mean square partial derivatives of orders α + β and γ + δ for α, β, γ, δ ∈
{0, 1, 2, . . . }, then

E
{
∂α+βf(t)
∂αti∂βtj

∂γ+δf(t)
∂γtk∂δtl

}
= (−1)α+β ∂α+β+γ+δ

∂αti∂βtj∂γtk∂δtl
C(t)

∣∣∣
t=0

(2.6.5)

= (−1)α+β iα+β+γ+δ

∫
RN

λαi λ
β
j λ

γ
kλ

δ
l ν(dλ).

Note that although this equation seems to have some asymmetries in the
powers, these disappear due to the fact that all odd ordered spectral moments,
like all odd ordered derivatives of C, are identically zero.

Here are some important special cases of the above, for which we adopt
the shorthand fj = ∂f/∂tj and fij = ∂2f/∂ti∂tj along with a corresponding
shorthand for the partial derivatives of C.

(i) fj has covariance function −Cjj and thus variance λ2ej = −Cjj(0), where
ej is the vector with a 1 in the j-th position and zero elsewhere.

(ii) In view of (2.6.3), and taking β = γ = δ = 0, α = 1 in (2.6.5)

f(t) and fj(t) are uncorrelated, (2.6.6)

for all j and all t. If f is Gaussian, this is equivalent to independence. Note
that (2.6.6) does not imply that f and fj are uncorrelated as processes. In
general, for s 6= t, we will have that E{f(s)fj(t)} = −Cj(s− t) 6= 0.

(iii) Taking α = γ = δ = 1, β = 0 in (2.6.5) gives that

fi(t) and fjk(t) are uncorrelated (2.6.7)

for all i, j, k and all t. Again, if f is Gaussian, this is equivalent to inde-
pendence.

Under the additional condition of isotropy, with its implication of spherical
symmetry for the spectral measure, the structure of the spectral moments
simplifies significantly, as do the correlations between various derivatives of f .
In particular, it follows immediately from (2.6.5) that

E {fi(t)fj(t)} = −E {f(t)fij(t)} = λ2δij (2.6.8)

where δij is the Kronecker delta and λ2 is the second spectral moment
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λ2
∆=
∫

RN
λ2
i ν(dλ), (2.6.9)

which, because of isotropy, is independent of the value of i. Consequently, if
f is Gaussian, then the first order derivatives of f are independent of one
another, in addition to being independent of f itself.

Finally, we note that a similar argument shows that even if f is neither
stationary nor isotropic, but does have constant variance, then it is still true
that f and its first order derivatives are uncorrelated.

2.6.2 Local Isotropy and the Induced Metric

Of all the relationships between spectral moments in the previous subsection,
the most important is probably (2.6.8), which describes the lack of correlation
between first order derivatives of random fields under isotropy. It turns out
that, in the case of Gaussian fields, this makes many computations that are, a
priori, quite forbidding actually quite easy. Thus it is not surprising that the
theory of Gaussian fields began with the isotropic case.

It is not in general possible to transform non-isotropic fields to isotropic
ones, but there are a number of ways to ensure that first order derivatives are
uncorrelated. This property is important enough that we shall give it a name,
defining random fields with constant mean and variance, and uncorrelated
first order derivatives, to be locally isotropic. .

It turns out that it is easy to transform non-isotropic but stationary ran-
dom fields f on RN to locally isotropic ones. If Λ is the N × N matrix of
second spectral moments λij , then it is trivial to check that the field defined
by f̃(t) = f(Λ−1/2t) is locally isotropic. (cf. (2.5.14).)

In the non-stationary case there is no such simple transformation available.
However, there is a trick, based on Riemannian geometry, that allows one to
change the Riemannian structure of the parameter space by introducing a
Riemannian metric related to the covariance function that makes all first
order Riemannian derivatives uncorrelated. It was this trick that, in many
ways, was one of the most important themes of RFG, and is what allows one
to move from a theory of stationary random fields on subsets of RN to non-
stationary fields on stratified manifolds. We shall see how this works later, in
Section 4.5 when we introduce this special (induced) metric at (4.5.1).

2.7 Three Gaussian Facts

We close this chapter with three facts about multivariate Gaussian random
variables that we shall need later. All are well known and easy to check, and
we include them now only so that they will be easy to refer back to later.

It follows from the form (2.0.1) of the multivariate Gaussian density that
if X ∼ Nd(m,C) then its characteristic function is given by
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φ(θ) = E{ei〈θ,X〉} = ei〈θ,m〉−θCθ
′/2, (2.7.1)

where θ ∈ Rd. From this follows the fact that, if A is a d× d matrix, then

XA ∼ N(mA, A′CA). (2.7.2)

Next, if n < d, make the partitions

X =
(
X1, X2

)
= ((X1, . . . , Xn), (Xn+1, . . . Xd)) ,

m =
(
m1,m2

)
= ((m1, . . . ,mn), (mn+1, . . .md)),

C =
(
C11 C12

C21 C22

)
,

where C11 is an n×n matrix. Then each Xi is N(mi, Cii) and the conditional
distribution of Xi given Xj is also Gaussian, with mean vector

mi|j = mi + (Xj −mj)C−1
jj Cji (2.7.3)

and covariance matrix

Ci|j = Cii − CijC−1
jj Cji. (2.7.4)

Finally, we quote a fundamental moment result known as Wick’s formula.
This states that if X = (X1, X2, . . . , Xd) ∼ N(0, C) then, for any non-negative
integer m,

E {X1X2 · · ·X2m+1} = 0, (2.7.5)

E {X1X2 · · ·X2m} =
∑

E{Xi1Xi2} · · ·E{Xi2m−1Xi2m}

=
∑

C(i1, i2) · · ·C(i2m−1, i2m), (2.7.6)

where the sum is taken over the (2m)! /m! 2m different ways of grouping
X1, . . . , X2m into m pairs. Wick’s formula can be proven by successive dif-
ferentiation of the characteristic function (2.7.1)





3

Some Geometry and Some Topology

In the preceeding two chapters we spent most of our time talking about prob-
ability, while making lots of tangential references to geometry and topology.
The time has now come to be a little more formal in defining the concepts
that we shall need from these disciplines.

Again, however, we remind you that these notes are meant to cover the
spirit of twelve hours of lectures, and so cannot be expected to be complete
and definitive. As always, you can find a lot of the missing details in RFG, of
which almost a third is devoted to setting things up properly. But, even there,
the treatment is not complete. Both geometry and topology are subjects that
require significant tomes of their own.

3.1 Some Notation for Riemannian Manifolds

We are going to assume that you are familiar with the basic notions of mani-
fold theory. (For the French among you, we have been assured that manifolds
are taught at about the same age at which French mathematicians are taught
how to count.) If you are unfamiliar with manifold theory, think of M , in all
that follows, as a sphere, torus, or all of RN . Better still, think of M as the
solid ball or solid doughnut, which are manifolds with infinitely differentiable
boundaries. In most applications it is manifolds with boundaries that are im-
portant. To be honest, in most applications the boundaries are only piecewise
smooth, a fact that leads to the need to treat the stratified manifolds intro-
duced in Section 3.3.

Now for the notation:
As usual, we write TtM for the tangent space to a manifold M at t. We

shall typically denote elements of Tt by Xt, Yt, etc, and denote differentiation
by such vectors as Xtf . The collection of all tangent spaces forms the tangent
bundle T (M) of M .

A Riemannian metric g on M is a family, {gt}t∈M , of inner products on
the tangent spaces TtM .
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A Ck manifold M together with a Ck−1 Riemannian metric g is called a
Ck Riemannian manifold (M, g).

The (Riemannian) gradient of a C1 function on a Riemannian manifold
(M, g) is the unique continuous vector field on T (M) such that

gt(∇ft, Xt) = Xtf (3.1.1)

for every vector field X. If M = RN with the usual Euclidean metric, then ∇f
is the usual gradient. In general, however, ∇f ‘knows’ about the geometry of
M , both ‘physical’ and ‘Riemannian’.

Given two vector fields X and Y on M , with Xt, Yt ∈ TtM for all t ∈M ,
we use the usual notation ∇XY to denote the covariant derivative of Y in
the direction X. Note that, unless M is flat, ∇XY (t) is quite different to the
usual derivative XtYt of Y in the direction X. If M is a surface in RN , ∇XY
is basically the projection of the latter onto the tangent spaces of M . Thus,
like the gradient, ∇XY (t) ∈ TtM , and, like the gradient, it ‘knows’ about the
geometry of M .

The last differential object that we require is the (covariant) Hessian ∇2f
of a function f ∈ C2(M) defined either as the bilinear symmetric map from
C1(T (M))× C1(T (M)) to C0(M) satisfying

∇2f(X,Y ) ∆= XY f −∇XY f = g(∇X∇f, Y ), (3.1.2)

or, more simply, as

∇2f = ∇(∇)f.

In the simple Euclidean case the Hessian is defined via the N ×N matrix

Hf = (∂2f/∂xi∂xj)Ni,j=1,

so that ∇2f(X,Y ) = XHfY
′.

We also need concepts of curvature. The first is the Riemannian curvature
operator, R, which measures the failure of covariant derivatives to commute,
and which is given by

R(X,Y ) ∆= ∇X∇Y − ∇Y∇X − ∇[X,Y ]. (3.1.3)

where the Lie bracket [X,Y ] = XY − Y X.
The (Riemannian) curvature tensor, also denoted by R, is defined by

R(X,Y, Z,W ) ∆= g
(
∇X∇Y Z −∇Y∇XZ −∇[X,Y ]Z, W

)
(3.1.4)

= g(R(X,Y )Z, W ),

where the R in the second line is, obviously, the curvature operator. It is easy
to check that for RN , equipped with the standard Euclidean metric, R ≡ 0,
whereas on the sphere Sκ(RN ) we have R ≡ −1/κ.
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Now suppose that M is embedded in some larger manifold M̃ . Then the
second fundamental form of M in M̃ is the operator S from T (M)×T (M) to
T⊥(M), the collection of normal complements of the TtM in TtM̃ , satisfying

S(X,Y ) ∆= P⊥T (M)

(
∇̃XY

)
= ∇̃XY −∇XY, (3.1.5)

where the equality here is known as Gauss’s formula.
Now let ν denote a unit normal vector field on M , so that νt ∈ T⊥t M

for all t ∈ M . Then the scalar second fundamental form of M in M̂ for ν is
defined, for X,Y ∈ T (M), by

Sν(X,Y ) ∆= ĝ (S(X,Y ), ν) , (3.1.6)

where the internal S on the right hand side refers to the second fundamental
form of (3.1.5). When there is no possibility of confusion we shall drop the
qualifier ‘scalar’ and refer also to Sν as the second fundamental form.

Finally, if M is orientable, which we shall henceforth assume without fur-
ther comment, the metric g determines a volume form, which we shall write
either as Volg or as HdimM , the latter generally denoting Hausdorff measure
based on the geodesic metric associated with the Riemannian metric g.

3.2 Coarea Formula

At the heart of the tube formula is another important result, due to Federer
[37] and known as his coarea formula. The coarea formula allows us to break
up integrals over manifolds into iterated integrals over submanifolds of lower
dimension, and is a generalisation of the classical change of variables formula.

To state it, consider a differentiable map f : M → N between two Rieman-
nian manifolds, with m = dim(M) ≥ n = dim(N), and define the generalised
Jacobian

Jf(t) ∆=
√

det (gt (∇fi(t),∇fj(t))). (3.2.1)

The coarea formula states that for differentiable1 f and for g ∈ L1(M,Hm),∫
M

g(t) Jf(t) dHm(t) =
∫
N

dHn(u)
∫
f−1(u)

g(s) dHm−n(s). (3.2.2)

Simplifying matters a little, consider two special cases. If M = RN and
N = R, both with the usual Euclidean metric, it is easy to see that Jf = |∇f |,
so that
1 Federer’s setting is actually somewhat more general than this, since it also holds

for Lipschitz mappings. In this format derivatives are replaced with ‘approximate
derivatives’ throughout.
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RN

g(t) |∇f(t)| dt =
∫

R
du

∫
f−1{u}

g(s) dHN−1(s), (3.2.3)

where ∇f is the usual Euclidean gradient.
Another important special case arises when M = N = RN , so that Jf =

|det∇f |, and ∫
RN

g(t) |det∇f(t)| dt =
∫

RN
du

∫
f−1{u}

g(s) dH0(s)

=
∫

RN

( ∑
t: f(t)=u

g(t)
)
du. (3.2.4)

Of course, if f is one-one, and the integrals are restricted to measurable do-
mains, then this is no more than∫

A

g(u) du =
∫
f(A)

g(t) |det∇f(t)| dt,

the usual change of variables formula.
We shall see that while (3.2.3) lies at the heart of the tube formula of

the following section, (3.2.4) lies at the heart of the Kac-Rice metatheorem of
Section 4.1.

3.3 Stratified Manifolds

Although there is a way to avoid it, unfortunately the natural setting in which
to build a topological theory of excursion sets involves sets with corners and
edges. There are two reasons for this. One is that in many applications the
parameter set of a random field itself has corners. The cube is the archtypical
example. The other is that even if one works with parameter sets such as
bounded domains with C∞ boundaries, and with C∞ fields f , even the simple
excursion sets Au = M∩{t : f(t) ≥ u} will typically have corners at the points
t ∈ ∂M at which f(t) = u.

The only way around this problem is to work with smooth fields on pa-
rameter spaces that are manifolds without boundary, and, if you like, you
can read the remainder of these notes believing that to be the case. It will
make many formulae much simpler, but it will make them extremely limited
as far as applications are concerned, with the possible expection of S(RN ) for
N = 2, 3.

There are many ways to build a theory of sets with corners, and, for reasons
that should become clearer later, we shall take the path of stratified manifolds
satisfying a collection of generally unrestrictive regularity conditions. The ba-
sic reference for these are the monographs by Goresky and Macpherson [43]
and Pflaum [67]. However, as usual, you can find the details we need in RFG.
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To define stratified manifolds, we start with a topological subspace M of
a Ck ambient manifold M̃ . The term ‘stratified’ refers to a decomposition of
M into strata which we take to be also be Ck manifolds. In particular, as in
Section 1.1, we have the decomposition

M =
dimM⊔
j=0

∂jM (3.3.1)

where ∂jM is the j-dimensional boundary of M made up from the disjoint
union of a finite number of j-dimensional manifolds. There is nothing unique
in the decomposition (3.3.1).

The first regularity condition that we shall require relates to how the re-
spective j-dimensional boundaries ∂jM are ‘glued’ together. The assumption
that we shall make is that they are glued in such a way that M is a Whitney
stratified manifold satisfying ‘Condition B’. . Without going into details (see
RFG) here are two examples:

1. The curve M = {(x, y) : x ∈ [0, π], y = sin(x)} is a Whitney stratified
manifold satisfying Condition B. The boundary ∂0M contains the two
points (0, 0) and (π, 0), while ∂1M is the remainder of the curve.

2. The curve M = {(x, y) : x ∈ [0, π], y = x sin(1/x)} is a stratified manifold
with the same decomposition, but its behaviour near the origin precludes
the regularity conditions.

The second of these examples is typical, in that one needs to be a little inven-
tive to find non-regular examples.

We shall also assume that our stratified manifolds are C2 and, for technical
reasons related to the Morse theory we shall introduce later, are embedded in
a manifold that is at least C3. In addition, we shall require that they are cone
spaces of arbitrary depth, C-tame for some finite C and locally convex2. All
of these are defined in RFG, and all, bar the local convexity, are conditions
meant to circumvent the imaginative examples that pure mathemeticians are
so fond of but that appear so rarely in applications. We shall call stratified
manifolds satisfying all of these conditions ‘regular’.

Examples of regular stratified manifolds abound, and include

• Piecewise linear sets.
• Finite simplicial complexes.
• Reimannian polyhedra.
• Reimannian manifolds (with boundary).

2 A set is called locally convex if all its support cones are convex. Note that local
convexity does not imply convexity. For example, the C∞ manifolds S(RN ), con-
sidered as subsets of RN , are locally convex for all N , but they are definitely not
convex. The shape ∨ has a convex support cone at every point other than at its
base, but this suffices to stop it from being locally convex.
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• Closed semialgebraic (subanalytic) subsets of Euclidean spaces. (i.e. sets
which are finite Boolean combinations of excursion sets of algebraic (ana-
lytic) functions.)

• Elements of the convex ring with piecewise C2 boundary.

Furthermore, regular stratified manifolds have many desirable properties,
among them

• They can be triangulated.
• They have a well defined Euler characteristic, definable as in (1.2.3) via

the triangulation.
• The intersection of two regular stratified manifolds is generally a regular

stratified space, with strata which are the intersections of the strata of the
two manifolds.

3.4 Tube Formulae and Lipschitz-Killing Curvatures

Back in Section 1.2 we already met a simple version of the Weyl tube formula,
which held for simple Euclidean sets and went by the name of Steiner’s for-
mula, cf. (1.2.7). We now want to develop a parallel result for N -dimensional,
C2, stratified manifolds M embedded in either Rl or Sλ(Rl), l ≥ N . For ex-
ample, in the first case, we want to show that, for sufficiently small ρ ≥ 0,
there exist numbers Lj(M), such that

Hl (Tube(M,ρ)) =
N∑
i=0

ρl−iωl−iLi(M), (3.4.1)

where Hl is l-dimensional Hausdorff measure. Furthermore, and importantly,
we want to know how to calculate the Lj . (We leave the analogous statement
of the spherical case for later.)

3.4.1 Describing Tubes

For the moment there is little to gain (and, in view of what will come later,
much to lose) by restricting ourselves to submanifolds of Rl and Sλ(Rl). Thus,
until further notice, we shall let our manifolds M be quite general. However,
in addition to assuming that M is embedded in an ambient manifold M̃ , we
shall also need to allow for the fact that M̃ itself may be embedded in a larger
manifold M̂ , to which we assign dimension l. (Think of M = S1 = S(R2),
a one dimensional circle embedded in the two-dimensional plane M̃ = R2. If
M̂ = R3, then the tube around M , as defined by (3.4.2), is a solid torus.)

With the triple

M ⊂ M̃ ⊂ M̂
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in mind, we establish the following convention about notation: In general, a ·̂
will denote an object when we are considering M as being embedded in M̂ .
For example, we write the normal cones of M as subsets of M̃ and M̂ by ÑtM
and N̂tM , respectively. Note for further reference that

N̂tM = ÑtM ⊕ TtM̃⊥

=
{
Xt ∈ TtM̂ : Xt = Vt + Yt, Vt ∈ ÑtM, Yt ∈ TtM̃⊥

}
,

where TtM̃⊥ is the orthogonal complement of TtM̃ in TtM̂.
Similarly, we denote the Riemannian metrics on M,M̃ and M̂ by g, g̃ and

ĝ, with similar notation for curvature tensors and second fundamental forms.
Throughout we assume that the metrics are consistent, in the sense that the
metrics on the smaller, embeddedm manifolds are pullbacks of those on the
larger manifolds. We also have Riemannian (Hausdorff) volume on each of the
manifolds, which we denote by Hn for the appropriate dimension n.

With the worst of the notation out of the way, we can now start looking
at tubes. The tube about M in M̂ , of radius ρ, is

Tube(M,ρ) =
{
x ∈ M̂ : dcM (x,M) ≤ ρ

}
, (3.4.2)

where dcM is geodesic distance on M̂ . Examples, to which we shall often return,
are given in Figure 3.4.1. There M is either a one-dimensional circle embedded
in the two-dimensional sphere M̃ = S(R3) and the tube is the annulus enclosed
between the highest and lowest circles, or M is a curve in space, in which case
the tube is a bent cylinder with rounded ends.

Fig. 3.4.1. Tubes around a circle embedded in a sphere and around a curve in R3.

With tubes defined, we can now begin, but shall not finish, a description
of how to derive tube formulae. Our basic aim is to go as far as is necessary
to show you how curvatures and second fundamental forms enter the picture,
skimping on detail for most of the derivation, and then stopping exactly where
the details start to involve long, problem specific, computations.

The first new concept that we shall need is that of the critical radius
ρc = ρc(M,M̂) of a manifold M . In general, tube formulae are only valid for
values of ρ < ρc. The first reason that we require ρ to be small is that we want
to start with a linearization of the metric projection ξM : M̂ →M given by
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ξM (s) ∆= argmin
t∈M

dcM (s, t), (3.4.3)

which, for ρ small enough, parameterizes the tube as the disjoint union

Tube(M,ρ) =
⋃
t∈M

{
s ∈ M̂ : ξM (s) = t, dcM (s, t) ≤ ρ

}
. (3.4.4)

Our first requirement on ρc is that it be less than the supremum of those ρ
for which this union is, in fact, disjoint.

For example, for the embedded circle in Figure 3.4.1, it is clear that ρ has
to be small enough that the top circle – the upper boundary of the tube –
does not reach the north pole. If it does, we lose the uniqueness required for
ξM to be well defined and for there to be a natural way for (3.4.4) to hold.

Another way that things can go wrong is if M is sharply concave. For
example, while for the smooth curve of Figure 3.4.1 ρc is clearly positive, if
we replace the curve by the shape ∨ we would have ρc = 0. This is why we
earlier required that our stratified manifolds be locally convex; i.e. that their
support cones3 StM are convex for every t ∈M . This will ensure that ρc > 0.

There is another way to write the tube (3.4.4), which relies on local lin-
earization and exponential maps. This second way will put us into a situation
that is natural for applying the coarea formula for Section 3.2.

Note first that{
s ∈ M̂ : ξM (s) = t, d̂(s, t) ≤ ρ

}
= expcM

({
Xt ∈ TtM̂ : P

TtfMXt ∈ NtM, |Xt| ≤ ρ
})

.

Here expcM is the exponential map from TtM̂ → M̂ for generic t ∈ M̂ , P
TtfM

is projection from TtM̂ → N̂tM , and |Xt| is the norm induced by ĝ.
Therefore, for ρ small enough,

Tube(M,ρ) =
⋃
t∈M

⋃
{Xt∈TtcM : |Xt|≤ρ}

expcM (t,Xt)

=
⋃
t∈M

⋃
{Xt∈N̂tM : |Xt|≤ρ}

expcM (t,Xt).

We shall also take ρ small enough for the second expression here to be a
disjoint union. We continue to denote the largest such ρ by ρc.

Now we make the small step that is in fact the major leap in deriving tube
formulae:
3 The support cone of a point t ∈ M is basically the closure of the cone of all

vectors originating at t and which remain in M for (at least) an arbitrarily short
distance.
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For ρ < ρc it now follows from the above that the Tube(M,ρ) is the image
of the region{

(t,Xt, r) : t ∈M, Xt ∈ N̂tM ∩ S(TtM̂), 0 ≤ r ≤ ρ
}

(3.4.5)

under the bijection F̂ defined by

F̂ (t,Xt, r)
∆= expcM (t, rXt). (3.4.6)

If you have trouble following all the symbols, look back to the curve in
Figure 3.4.1. Here both the exponential map and F̂ are identity mappings. In
(3.4.5) the normal cone at each interior point is the plane perpendicular to
the tangent line at the point. Letting Xt move over the ‘sphere’ in this plane
traces out a circle, and allowing r to run between 0 and ρ fills out a disc of
radius ρ. The union of these over t gives the cylindrical part of the tube. The
two end regions can be handled similarly.

Now try it with the spherical example of Figure 3.4.1, in which expcM and
F̂ are no longer the identity.

Why is all this important? Because we are now in a position to use the
coarea formula.

3.4.2 Computing Volumes

Consider again the set in (3.4.5) and stratify it according to the stratifica-
tion of M . In particular, let Dj(ρ) be the stratum obtained by restricting t
to the ∂jM there. The mapping (3.4.6) is then slightly different over each
Dj(ρ) and we acknowledge this by writing the restriction to Dj(ρ) as Fj ,
j = 0, . . . ,dim(M), dropping the hat off F .

With this notation, it is immediate that the volume of the tube around M
is given by

Hl(Tube(M,ρ)) =
N∑
j=0

Hl(Fj(Dj(ρ))), (3.4.7)

where we remind you that at each point a H appears we are using it to denote
the Riemannian (or Hausdorff) volume on the appropriate space.

Now we can apply the coarea formula, to write each volume here as

Hl(Fj(Dj(ρ))) =
∫ ρ

0

∫
Sj(r)

1Fj(Dj(ρ))(x)Hj,r(dx)dr, (3.4.8)

where

Sj(r)
∆= {s ∈ M̂ : dcM (s, ∂jM) = r}, (3.4.9)

and Hj,r is the volume form induced on Sj(r) by Hl.
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Alternatively, we can pull back Hj,r to the level sets making up Dj(ρ) to
obtain

Hl(Fj(Dj(ρ))) =
∫ ρ

0

∫
∂jM×S(Rl−j) 1Dj(ρ)(t, s, r)F

∗
j,r(Hj,r)dr, (3.4.10)

where Fj,r is the partial map

Fj,r(t, s)
∆= Fj(t, s, r)

and F ∗j,r(Hj,r) is the pullback of Hj,r.
In some sense, we are now done, and all that remains is some multivariate

calculus, which, in the (in)famous words of Hermann Weyl [86], could be
“accomplished by any student in a course of calculus”. In fact, in order to turn
(3.4.10) into a useable form, one needs only compute the pullback measures
F ∗j,r(Hj,r). This, in turn, requires computing some Jacobians and these, in
turn, will involve the curvature and second fundamental form of M .

The actual computations are rather involved, and you can find details of
them in RFG or any text on tubes. What it leads to is the definition of the
following quantities, known as Lipschitz-Killing curvature measures (cf. [37])
which, for dim(M̃) = dim(M̂) = N = l, and 0 ≤ i ≤ N , are given by

(3.4.11)

Li(M,A) =
N∑
j=i

(2π)−(j−i)/2
b j−i2 c∑
m=0

C(N − j, j − i− 2m)
(−1)m

m! (j − i− 2m)!

×
∫
∂jM∩A

∫
S(Tt∂jM⊥)

TrTt∂jM
(
R̃mS̃j−i−2m

νN−j

)
×1

N̂tM
(−νN−j) HN−j−1(dνN−j)Hj(dt),

and we define Li(M ; ) ≡ 0 if i > dim(M).
There is a lot to explain here. The constants are given by

C(m, i) ∆=

{
(2π)i/2

sm+i
m+ i > 0,

1 m = 0.
(3.4.12)

Integrals over empty regions and integrals associated with measures of
negative index are taken to be zero. For the manifolds that we have been
discussing, with no boundary or a smooth boundary ∂N−1M , there are never
more than two terms in the sum over j, but (3.4.11) is more general than this
case. The terms R̃ and S̃ denote curvature tensors and second fundamental
forms, respectively, and TrTt∂jM denotes trace operators on the tangent spaces
of ∂jM .

Formula (3.4.11) simplifies somewhat if M is directly embedded in Rl and
endowed with the canonical Riemannian structure on Rl; i.e. M̃ = M̂ = Rl.
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Then, by the flatness of Rl (R ≡ 0 and so only the terms with m = 0 remain
in (3.4.11)) the curvature measures (3.4.11) can be written as

Li(M,A) =
N∑
j=i

(2π)−(j−i)/2C(N − j, j − i) (3.4.13)

×
∫
∂jM∩A

∫
S(RN−j)

1
(j − i)!

TrTt∂jM (S̃j−iη )

×1
N̂tM

(−η)HN−j−1(dη)Hj(dt),

They simplify even further if M is a C2 domain of RN . In this case
LN (M,U) is the Lebesgue measure of U and

Lj(M,U) =
1

sN−j(N − 1− j)!

∫
∂M∩U

Tr(SN−1−j
νt ) Vol∂M,g, (3.4.14)

for 0 ≤ j ≤ N − 1, where νt is the inward normal at t and Vol∂M,g is surface
measure on ∂M .

In this setting (3.4.14) can also be written in another form that is of-
ten more conducive to computation. If we choose an orthonormal frame field
(E1 . . . , EN−1) on ∂M , and then extend this to one on M in such a way that
EN is the inward normal, then (3.4.14) can be rewritten as

Lj(M,U) =
1

sN−j

∫
∂M∩U

detrN−1−j(Curv) Vol∂M,g, (3.4.15)

where, for a matrix A,

detrj(A) ∆= Sum over all j × j principle minors of A.(3.4.16)

and the curvature matrix Curv is given by

Curv(i, j) ∆= SEN (Ei, Ej). (3.4.17)

It is important to note that while the elements of the curvature matrix may
depend on the choice of basis, detrN−1−j(Curv) is independent of the choice,
as will be Lj(M,U).

Finally we define the (signed) total masses of the curvature measures to
be the Lipschitz-Killing curvatures

Li(M) ∆= Li(M,M). (3.4.18)

The Lipschitz-Killing curvatures also appear under a variety of other
names, such as quermassintegrales, Minkowski, Dehn and Steiner function-
als, curvature invariants, and intrinsic volumes, although in many of these
cases the ordering and normalisations are somewhat different from ours.

Among these the term intrinsic volumes and curvature invariants will
have a special meaning for us and we shall return to these in a moment. In
the meantime, however, here is the first tube formula:
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Theorem 3.4.1. (Weyl’s tube formula on Rl) Suppose M ⊂ Rl is regular
stratified manifold. Then, for ρ < ρc(M,Rl),

Hl (Tube(M,ρ)) =
dimM∑
i=0

ρl−iωl−iLi(M), (3.4.19)

where the Lj(M) are given by (3.4.13) and (3.4.18)

In preparation for Weyl’s tube formula on spheres, we need to extend
the Lipschitz-Killing measures slightly to obtain the one parameter family of
measures

(3.4.20)

Lκi (M,A) ∆=
N∑
j=i

(2π)−(j−i)/2
b j−i2 c∑
m=0

(−1)mC(N − j, j − i− 2m)
m!(j − i− 2m)!

×
∫
∂jM∩A

∫
S(Tt∂jM⊥)

TrTt∂jM
((
R̃+

κ

2
I2
)m

S̃j−i−2m
νN−j

)
×1NtM (−νN−j) HN−j−1(dνN−j) Hj(dt).

Note that L0
i (M, ·) ≡ Li(M, ·).

As for Li(M), we define the one parameter family of Lipschitz-Killing
curvatures, or intrinsic volumes,

Lκi (M) ∆= Lκi (M,M). (3.4.21)

Furthermore, if κ > 0 and M̃ = M̂ = Sκ−1/2(RN ) (` = N) then, as in (3.4.13),
there is a simplification. This time it is due to the fact that then M will have
constant negative curvature −κ, so that all the terms with m 6= 0 in (3.4.20)
disappear. The result is

Lκi (M,A) =
N∑
j=i

(2π)−(j−i)/2C(N − 1− j, j − i) (3.4.22)

×
∫
∂jM∩A

∫
S(Tt∂jM⊥)

1
(j − i)!

TrTt∂jM (S̃j−iη )

×1
N̂tM

(−η)HN−j−2(dη).

It turns out that Euclidean and spherical Lipschitz-Killing curvatures are
related, and expanding the trace term in (3.4.20) gives

Lκi (·) =
∞∑
n=0

(−κ)n

(4π)n
(i+ 2n)!
n!i!

Li+2n(·), (3.4.23)
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and

Li(·) =
∞∑
n=0

κn

(4π)n
(i+ 2n)!
n!i!

Lκi+2n(·). (3.4.24)

Here now is Weyl’s tube formula on Sλ(Rl).

Theorem 3.4.2. (Weyl’s tube formula on Sλ(Rl)) Suppose M ⊂ Sλ(Rl) is
a regular stratified manifold. Then, for ρ < ρc(M,Sλ(Rl)),

Hl−1 (Tube(M,ρ))

=
∞∑
i=0

λl−1−iGi,l−1−i(ρ/λ)Lλ
−2

i (M)

=
∞∑
j=0

b j2 c∑
n=0

(−4π)−n
λl−1+j

n!
j!

(j − 2n)!
Gj−2n,l−1+2n−j(ρ/λ)

Lj(M),

where

Ga,b(ρ) ∆=
πb/2

bΓ
(
b
2 + 1

) ∫ ρ

0

cosa(r) sinb−1(r) dr

=
πb/2

Γ
(
b
2

)IB(a+1)/2,b/2(cos2 ρ),

with

IB(a+1)/2,b/2(x) ∆=
∫ 1

x

x(a−1)/2(1− x)(b−2)/2 dx

the tail of the incomplete beta function.

3.4.3 Intrinsic Volumes

Here is a small section, which contains no more than two side comments which
could have been included earlier. But the comments are important, and we
want to make sure that you don’t miss them, so they get their own bold faced,
large font, header.

The first comment is that the Lipschitz-Killing curvatures, as we defined
them in (3.4.11) for stratified manifolds embedded in RN with the standard
Euclidean metric, could have been defined, in precisely the same way, for
any stratified Riemannian manifold. The curvature, second fundamental form
and Hausdorff measure would then be the ones generated by the Riemannian
metric, but the definition still makes sense. Thus, we shall do this, and define
the Lipschitz-Killing curvatures of a general stratified Riemannian manifold
by (3.4.11).
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Of course, we can no longer claim that the same tube formula holds. Even
in the cases of RN and Sλ(Rl) we saw that while Lipschitz-Killing curvatures
appeared in both, the constants involved were very much dependent on the
physical differences between the two ambient spaces.

Having defined Lipschitz-Killing curvatures in general, there is an impor-
tant point to note, and that is that the Lj are intrinsic, in the sense that
depend only on how M sits in M̃ (via R̃ and S̃) but in no way reflect the
largest manifold M̂ . That this is the case is, at first sight, somewhat surpris-
ing, since they arose while deriving a tube formula for the tube in M̂ . In fact,
this was the deep part of Weyl’s first proof of a general tube formula, and was
why he considered what we have presented here – which does not prove that
the Lj(M) are intrinsic – could have been “accomplished by any student in a
course of calculus”.

One consequence of this fact is that Lipschitz-Killing curvatures remain
constant under Riemannian isometries. That is, suppose we have a diffeo-
morphism ϕ between two manifolds M and N . Suppose N has an associated
Riemannian metric g, and we pull it back to M to generate a metric ϕ∗g
there. Then (M,ϕ∗g) and (N, g) are indistinguishable from the point of view
of Riemannian geometry, and, in particular, their Lipschitz-Killing curvatures,
being intrinsic, are identical. This is one of the reasons that they are often
called ‘intrinsic volumes’ or ‘curvature invariants’.

A major consequence of this is related to what we hinted at earlier when
talking about the mapping that took Gaussian processes with finite orthonor-
mal expansions and on general parameter spaces to the canonical process on
a subset of a sphere (cf. Section 2.4.) For example, in Section 2.4.1 we saw
that exceedence probabilities for such processes could be expressed in terms
of exceedence probabilities of the canonical process. Assuming, correctly, that
we can show that the latter depend only on the Lipschitz-Killing curvatures
of subsets of the sphere, we now have a way of writing these probabilities in
terms of the parameters of original random field.

Finally, we reiterate the perhaps surprising, and definitely deeper, fact that
L0(M) is the Euler characteristic ofM , and so independent of any Riemannian
structure. This is the celebrated Gauss-Bonnet Theorem.

Somewhat easier to check is the fact that LN (M) = HN (M).

3.5 Probabilities of Tubes: Gaussian Minkowski
Functionals

Our entire discussion of tube sizes has, up until now, been based on their
volumes with respect to some Hausdorff measure, either Euclidean or deter-
mined by some Riemannian metric. However, there is an interesting extension
of these ideas, from volumes to probabilities. This extension will be of crucial
importance for us in what follows.
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Suppose that P is a probability measure on Rk with an analytic density
ϕ with respect to Lebesgue measure, a canonical example being the Gaussian
measure γk corresponding to the distribution of a N(0, Ik×k) random variable.

Then we can talk about the probability content of a tube, and, for A a
regular, N -dimensional, stratified manifold in Rl, replace (3.4.8) by

P {Fj(Dj(ρ))} =
∫ ρ

0

∫
Sj(r)

1Fj(Dj(ρ))ϕ(x)Hj,r(dx)dr (3.5.1)

Now suppose we expand the density ϕ in a power series in normal direc-
tions and integrate over the hypersurfaces Sj(r) of (3.4.9). Doing so gives an
expansion4 of the form

P {Tube(A, ρ)} ∆=
∞∑
j=0

ρj

j!
MP

j (A), (3.5.2)

in which the MP
j (A) can be represented as curvature integrals which, for the

curious, we shall define in a moment. In general, however, finding explicit
expressions for the MP

j via this construction is, not easy, and beyond the
scope of these notes. Details, for Gaussian P, can be found in Chapter 10 of
RFG. When P = γk, the distribution of a N(0, Ik×k) random vector, then the
corresponding Mγk

j are known as the Gaussian Minkowski functionals.
Alternatively, given any other way for computing the probability content

of a tube, so that the left hand side of (3.5.2) is known, the right hand side
gives an implicit definition of theMP

j , much as we originally defined intrinsic
volumes via Steiner’s formula.

To see how this might work, consider the simple, one-dimensional example
for which P is taken to be γ = γ1, the distribution of a standard normal
variable. For A we take the semi-infinite interval [u,∞). The argument is then
simple and starts with a Taylor series expansion of the Gaussian distribution
function Φ using Hermite polynomials and their property (2.2.7):

γ
(
Tube([u,∞), ρ)

)
= 1− Φ(u− ρ)

= 1−
(
Φ(u) +

∞∑
j=1

(−ρ)j

j!
(−1)j−1

√
2π

Hj−1(u)e−u
2/2

)

= 1− Φ(u) +
∞∑
j=1

ρj

j!
1√
2π
Hj−1(u)e−u

2/2,

so that, on comparison with (3.5.2), we find that
4 Note that there is a qualitative difference between (3.5.2) and the Steiner and

Weyl formula. The latter are expansions with only a finite number of terms,
whereas (3.5.2) is, in principle, and generally in practice, an infinite expansion.

Another difference lies in the fact that MP
j (A) ≡ 0 for all j < N − dim(A), so

that the sum in (3.5.2) actually starts at j = N − dim(A).
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Mγ
j ([u,∞)) =

1√
2π
Hj−1(u)e−u

2/2, (3.5.3)

and we are done.
This was a particularly easy computation, but it turns out that in very

many of the important cases to follow, in which P = γk, similar arguments
hold. For example, suppose that F : Rk → R is smooth enough for the sets
F−1([u,∞)) to be smooth and locally convex. Suppose also that

Tube
(
F−1([u,∞)), ρ

)
= F−1([u− ρ,∞)), (3.5.4)

a relationship that we shall see holds surprisingly often in practice. Then it
follows immediately from the tube formula (3.5.2) that, for A of this form,

MP
k (A) =

dk

dρk
P
{
F−1([u− ρ,∞))

} ∣∣∣
ρ=0

(3.5.5)

= (−1)k
dk

dxk
P {F (Z) ≥ x}

∣∣∣
x=u

,

where Z ∼ γk.
These kinds of sets appear often in applications, in which they take the

form of rejection regions of a statistical test. In particular, given this result,
it should now be clearer why we initially introduced the structure of Figure
1.1.1, in which considered random fields of the form g = F ◦ f for vector
valued, Gaussian f . The above observations are going to allow us to compute
mean properties of the excursion sets of the non-Gaussian g from the Gaussian
kinematic formula. Some examples are given in Section 5.2.

Before moving on, we devote a half page to the curious reader, who wants
to see an explicit construction of theMγk

j , rather than relying on their implicit
definition via the expansion (3.5.2). Firstly, however, we need to somewhat
extend the notion of Lipschitz-Killing curvatures.

Take Borel A ⊂ Rl and B ⊂ S(Rl), retain the notation of (3.4.11) and
define, for 0 ≤ i ≤ l − 1, a family of generalised Lipschitz-Killing curvature
measures supported on M × S(Rl) by

L̃i(M,A×B) ∆=
l∑
j=i

(2π)−(j−i)/2
b j−i2 c∑
m=0

(−1)mC(l − j, j − i− 2m)
m! (j − i− 2m)!

(3.5.6)

×
∫
∂jM∩A

∫
S(T⊥∂jM)∩B

TrTt∂jM
(
R̃mS̃j−i−2m

νl−j

)
×Hl−j−1(dνl−j)Hj(dt).

For i = l we define L̃i only on sets of the form A × S(Rl) by setting L̃l(A ×
S(Rl)) = Hl(A). For Borel f : Rl × S(Rl) → R, let L̃i(M,f) denote the
integral of f with respect to L̃i.
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A change of numbering and normalization now defines the generalised
Minkowski curvature measures as

M̃j(M,A×B) ∆= (j! ωj) L̃l−j(M,A×B). (3.5.7)

With these definitions we can now give a direct definition of the Gaussian
Minkowski functionals appearing of (3.5.2) by setting

Mγ
j (M) ∆= (2π)−l/2

j−1∑
m=0

(
j − 1
m

)
M̃m+1

(
M,Hj−1−m

(
〈t, η〉

)
e−|t|

2/2
)
. (3.5.8)

For more details, see RFG.

3.6 Kinematic Formulae

We already met the kinematic fundamental formula for nice subsets of RN
back in Section 1.3.3, cf. (1.3.9). All that remains to say about it is that back
there we were not very precise about the classes of sets for which it held.
Now we have the language to tell you that it holds, among others, for regular
stratified manifolds in RN , a proof of which can be found, for example, in [16].

In fact, it holds in far greater generality, and for a full treatment of this
important result in a variety of scenarios you should turn to any of the classic
references, including [13, 22, 38, 57, 71, 73].

What will be far more important for us, however, is a version of the kine-
matic fundamental formula for subsets of S√n(Rn), in which the averaging is
carried out over Gn,λ, the group of isometries (i.e. rotations) on Sλ(Rn).

Noting that Gn,λ ' O(n), we normalize Haar measure νn,λ on Gn,λ so
that, for any x ∈ Sλ(Rn) and every Borel A ⊂ Sλ(Rn), we have

νn,λ ({gn ∈ Gn,λ : gnx ∈ A}) = Hn−1(A). (3.6.1)

The kinematic fundamental formula on Sλ(Rn) then reads as follows, where
M1 and M2 are regular stratified manifolds in Sλ(Rn).∫

Gn,λ

Lλi (M1 ∩ gnM2) dνn,λ(gn) (3.6.2)

=
n−1−i∑
j=0

[
i+ j
i

] [
n− 1
j

]−1

Lλi+j(M1)Lλn−1−j(M2)

=
n−1−i∑
j=0

si+1sn
si+j+1sn−j

Lλi+j(M1)Lλn−1−j(M2),

where the functionals Lλi (·) are from the one parameter family defined in
(3.4.20).
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3.7 Crofton’s Formula

A result closely related to the kinematic fundamental formula is a much older
result due to Morgan Crofton and named for him, in which instead of looking
at the intersections between two compact sets one looks at ‘random’ cross-
sections, of various dimensions, of a single set. Crofton’s formula will help
us later on a couple fronts. The most important will be that it shows that
one can say much about Lipschitz-Killing curvatures by knowing only about
Euler characteristics of cross-sections.

To formulate Crofton’s formula we need to recall the affine Grassmanian
manifold Graff(N, k), the set of k-dimensional subspaces of RN ; viz. the
collection of all linear spaces in RN that do not necessarily pass through the
origin. Noting that the affine Grassmanian is diffeomorphic to Gr(N, k)×RN ,
it has a natural measure, λNk say, which factors as Haar measure νNk on the
Grassmanian Gr(N, k) of all linear subspaces of RN (which must pass through
the origin) and Lebesque measure on RN . We normalize νNk so that

νNk (Gr(N, k)) =
[
N
k

]
.

Crofton’s formula then states that, for a regular stratified manifold M ∈ RN ,∫
Graff(N,N−k)

Lj(M ∩ V ) dλNN−k(V ) =
[
k + j
j

]
Lk+j(M). (3.7.1)

The Lj in (3.7.1) are all computed with respect to the standard Euclidean
metric on RN .

The special case k = 0 of Crofton’s formula is generally known as Had-
wiger’s formula and is given by

Lk(M) =
∫

Graff(N,N−k)

L0(M ∩ V ) dλNN−k(V ). (3.7.2)

Note how, as promised, Hadwiger’s formula allows one to compute all the
Lipschitz-Killing curvatures from the Euler characteristics of cross-sections.

Nice places to read about these results, in the setting of M in the convex
ring, are [57, 71], while a full proof in the generality we require can be found
in [16].

3.8 Morse’s Theorem

Crofton’s formula tells us that, among all the Lipschitz-Killing curvatures,
there is something special about the first one L0(M) ≡ ϕ(M), the Euler
characteristic. We already noticed this back in the Introduction, when we
started with the Euler characteristics and saw a number of way in which it
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could be defined and/or calculated, depending on which area of geometry or
topology one approached it. One of the ways was via the alternating sum
(1.2.4) of number of critical points of different types.

In this section we want to state that result more formally, and in the
setting of stratified Riemannian manifolds.

Before we start, we need to define Morse functions, and remind you that
our regular stratified manifold M must, by the definition of regularity, be
embedded in a C3 manifold M̃ . Then a function f ∈ C2(M̃) is called a Morse
function on M if it satisfies the following two conditions on each stratum ∂jM ,
j = 0, . . . ,dim(M).

(i) All the critical points of f|∂jM on ∂jM (i.e. the points t ∈ ∂jM for which
the covariant derivative ∇f̃t ∈ T⊥t ∂jM) are non-degenerate, in the sense
that at these points the covariant Hessian ∇2f|Tt∂jM is non-degenerate
when considered as a bilinear mapping.

(ii) The restriction of f to ∂jM =
⋃j
i=0 ∂iM has no critical points on⋃j−1

i=0 ∂iM .

Now, for a Morse function f on M , define the Morse index ιf,∂jM (t) of a
critical point t ∈ ∂jM of f|M to be the dimension of the largest subspace L
of Tt∂jM such that ∇2f(t)

∣∣
L

is negative definite. Thus, a point of tangential
Morse index zero is a local minimum of f on ∂jM , while a point of index
j is a local maximum. Other indices correspond to saddle points of various
kinds. Here then is Morse’s theorem, due, in the form below, to Goresky
and MacPherson [43]. A simple but important special case (especially for the
reader who wants to assume that stratified manifolds are all cubes) will follow.

Theorem 3.8.1 (Morse’s Theorem). Let M be a regular stratified mani-
fold embedded in M̃ and f̃ ∈ C2(M̃) a Morse function on M . Then, setting
f = f̃|M ,

ϕ(M) =
N∑
j=0

∑
{t∈∂jM :∇ft∈T⊥t ∂jM}

(−1)ιf,∂jM (t)
1{−∇ft∈NtM}, (3.8.1)

where ϕ(M) is the Euler characteristic of M .

Note that if M is does not have a boundary, then this is precisely the formula
we gave in the Introduction for computing Euler characteristics via critical
points, viz. (1.2.4).

There is an extension of Morse’s formula to cover the Euler characteristics
of excursion sets, a proof of which (assuming Morse’s theorem) can be found
in RFG.

Corollary 3.8.2. Let f and M be as in Theorem 3.8.1, and suppose that
u ∈ R is not a critical value of f|∂jM for any j = 0, . . . , N . Then, writing
f = f̃|M ,
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ϕ
(
M ∩ f−1[u,∞)

)
=

N∑
j=0

∑
{t∈∂jM :ft>u,∇ft∈T⊥t ∂jM}

(−1)ι−f,∂jM (t)
1{∇ft∈NtM}.

(3.8.2)

We call the points counted in the above sum – i.e. those for which ∇ft ∈
Nt(M) – the extended outward critical points of f .

Morse’s Theorem is a deep and important result, requiring concepts from
both differential and algebraic topology for its proof. It is actually somewhat
more general than as stated above, since in its full form it also gives a series
of inequalities linking Betti numbers of different orders to numbers of critical
points of different index. We shall return to this later, but now look at the
special case alluded to above.

If M is simply the N -dimensional cube IN = [0, 1]N , then the Morse
representation (3.8.2) of the excursion set Euler characteristic becomes very
simple.

Let Jk ≡ ∂kI
N denote the collection of faces of dimension k in IN . Then

we can rewrite the sum (3.8.2) as

ϕ
(
Au(f, IN )

)
=

N∑
k=0

∑
J∈Jk

k∑
i=0

(−1)i µi(J), (3.8.3)

where, for i ≤ dim(J),

µi(J) ∆= #
{
t ∈ J : f(t) > u, ∇f|J(t) = 0, ∇ft ∈ NtIN , ι−f,J(t) = i

}
.

Note that to each face J ∈ Jk there corresponds a subset σ(J) of
{1, . . . , N}, of size k, and a sequence of N − k zeroes and ones ε(J) =
{ε1, . . . , εN−k} so that

J =
{
t ∈ IN : tj = εj , if j /∈ σ(J), 0 < tj < 1, if j ∈ σ(J)

}
.

Setting ε∗j = 2εj − 1, it is now not hard to see that µi(J) is given by the
number of points t ∈ J satisfying the following four conditions:

f(t) ≥ u, (3.8.4)
fj(t) = 0, j ∈ σ(J) (3.8.5)

ε∗jfj(t) > 0, j /∈ σ(J) (3.8.6)
index (fmn(t))(m,n∈σ(J)) = k − i, (3.8.7)

where, as usual, subscripts denote partial differentiation, and, consistent with
the definition of the index of a critical point, we define the index of a matrix
to be the number of its negative eigenvalues.

In Figure 3.8.1 there are three points which contribute to the Euler char-
acteristic of Au(f, I2), which itself is made up of three disjoint pieces. One,
in the centre of the upper left disk, contributes via J = (I2)◦ = J2. That on
the right side contributes via J =‘right side’∈ J1, and that on the lower left
corner via J = {0} ∈ J0.
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Fig. 3.8.1. Points contributing to the Euler characteristic of an excursion set, along
with their associated outward normals.





4

The Gaussian Kinematic Formula

Our aim in this chapter is to show you how to prove the Gaussian kinematic
formula, (1.3.3). That is, that for f : M → Rd, with component random
fields f1, . . . , fd which are smooth, zero mean, unit variance, and Gaussian,
and where M and D ⊂ Rd are nice enough,

E {Li (A(f,M,D))} =
dimM−i∑
j=0

[
i+ j
j

]
(2π)−j/2Li+j(M)Mγ

j (D). (4.0.1)

The Lj are the Lipschitz-Killing curvatures, or intrinsic volumes, of Section
3.4.3, computed with respect to a Riemannian metric induced on M by the
component random fields fj . These will soon be defined in Section 4.5.

Of course “to show you how to prove” is not quite the same as “to prove”,
and, indeed, we shall not attempt the latter. For this you will have to read
Chapter 15 of RFG. What we shall do, however, is to prove a special case
of (4.0.1), showing that for real valued, mean zero, unit variance, smooth,
isotropic, Gaussian random fields on rectangles T =

∏N
1 [0, Tj ],

E {L0 (A(f,M, [u,∞)))} = E {ϕ (Au)} (4.0.2)

= e−u
2/2

N∑
j=0

(2π)−(j+1)/2λ
j/2
2 Lk(T )Hj−1 (u) .

The Hermite polynomials Hj were defined at (2.2.5)–(2.2.6), and λ2 is the
second spectral moment (2.6.9) of f . The Lj in (4.0.2) are the standard,
Euclidean, Lipschitz-Killing curvatures, which in this case are given by

Lj(T ) =
∑
j1...jk

Tj1 · · ·Tjk , (4.0.3)

the sum taken over the
(
N
k

)
distinct choices of k indices between 1 and N . (cf.

(1.2.12).) L0 is, as always, the Euler characteristic ϕ.
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The proof of (4.0.2) is not hard (particularly as we shall also skip some
of the messy but conceptually straightforward calculus that it involves). The
proof is also key to the first part of the proof of the general case, and will be
given in Section 4.2. It will take us the remainder of the chapter to get to the
most general case, and we shall proceed in a number of small steps, each of
independent interest, rather than trying to make one giant leap.

The first steps involve moving from the Euler characteristic to the other
Lipschitz-Killing curvatures in Section 4.3, and then from from isotropy to
stationarity in Section 4.4. Life starts getting complicated after this, and so
in Section 4.5 we explain the need for a Riemannian approach to the problem
based on the ‘induced metric’.

Section 4.6 treats another special case, that of the canonical isotropic pro-
cess on the N -sphere, which is extended to quite general random fields, but
with finite expansions, in Section 4.7. The final Section 4.8 then describes how
to put all the pieces together so as to prove the most general results, although
to fill in the details you will still need to go to RFG.

However, before we start on this path, we need an important technical
result of significant independent interest.

4.1 The Kac-Rice Metatheorem

The technical result we need has its roots going back at least 70 years, to
seminal papers by Rice [69, 70] and Kac [54] who were interested in the number
of real zeroes and the number of maxima of finite order polynomials with
Gaussian coefficients. The more modern versions still retain the names of
the pioneers, although we shall often call the version we need the Kac-Rice
(expectation) metatheorem rather than the Kac-Rice formula.

To state it, consider two vector valued random fields f = (f1, . . . , fN )
and g = (g1, . . . , gK) defined on some compact set M ⊂ RN with non-empty
interior. For B ⊂ RK , we want to compute the expectations

E
{

# {t ∈M : f(t) = u, g(t) ∈ B}
}
. (4.1.1)

Perhaps the most basic application of (4.1.1) is to prove the famous Rice
formula for the expected number of upcrossings of the level u of a real valued
process f on the line, where an upcrossing is defined as a point t where f(t) = u
and f(t) is increasing. In this example g = ḟ and B = [0,+∞).

We, however, shall generally use it to compute expected numbers of critical
points of real valued fields h, so that f = ∇h and, if the critical points to be
counted are, for example, local maxima, then g would be the indicator of the
event that ∇2h is a negative definite matrix and B = {1}.

The theorem follows. Note that since ∇f denotes the gradient of f , and
f takes values in RN , the gradient is the N ×N matrix of first-order partial
derivatives of f ; i.e.
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(∇f)(t) ≡ ∇f(t) ≡
(
f ij(t)

)
i,j=1,...,N

≡
(
∂f i(t)
∂tj

)
i,j=1,...,N

.

Theorem 4.1.1. Let f , g, M and B be as above, with the additional assump-
tion that the boundaries of M and B have finite N −1 and K−1 dimensional
measures, respectively. Furthermore, assume that the following conditions are
satisfied for some u ∈ RN :

(a) All components of f , ∇f , and g are a.s. continuous and have finite vari-
ances (over M).

(b) For all t ∈M , the marginal densities pt(x) of f(t) (implicitly assumed to
exist) are continuous at x = u.

(c) The conditional densities pt(x|∇f(t), g(t)) of f(t) given g(t) and ∇f(t)
(implicitly assumed to exist) are bounded above and continuous at x = u,
uniformly in t ∈M .

(d) The conditional densities pt(z|f(t) = x) of det∇f(t) given f(t) = x, are
continuous for z and x in neighbourhoods of 0 and u, respectively, uni-
formly in t ∈M .

(e) The conditional densities pt(z|f(t) = x) of g(t) given f(t) = x, are con-
tinuous for all z and for x in a neighbourhood u, uniformly in t ∈M .

(f) The following moment condition holds:

sup
t∈M

max
1≤i,j≤N

E
{∣∣f ij(t)∣∣N} <∞. (4.1.2)

(g) The moduli of continuity with respect to the usual Euclidean norm (cf.
(2.5.9)) of each of the components of f , ∇f , and g satisfy

P {ω(η) > ε } = o
(
ηN
)
, as η ↓ 0, (4.1.3)

for any ε > 0.

Then, if

Nu ≡ Nu(M) ≡ Nu(f, g : M,B)

denotes the number of points in M for which

f(t) = u ∈ RN and g(t) ∈ B ⊂ RK ,

and pt(x,∇y, v) denotes the joint density of (ft,∇ft, gt), we have, with D =
N2 +K,

E{Nu} =
∫
M

∫
RD
|det∇y| 1B(v) pt(u,∇y, v) d(∇y) dv dt. (4.1.4)

It is sometimes more convenient to write this as

E{Nu} =
∫
M

E
{
|det∇f(t) | 1B(g(t))

∣∣∣ f(t) = u
}
pt(u) dt, (4.1.5)

where pt here is the density of f(t).
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In our applications of Theorem 4.1.1, the expression (4.1.5) will be the
principal form used.

For a full proof, see RFG, where this result appears as Theorem 11.2.1.
An outline of the beginning of this proof, that at least shows from where the
result comes, will be given in a moment.

Conditions (a)–(g) are often tedious to check, but almost disappear when
both f and g are either Gaussian, or simple functions of vector valued Gaus-
sian random fields. In these situations, the primary consideration becomes one
of sample path continuity and differentiability, which we already looked at at
in Chapter 2.

Corollary 4.1.2. Let f and g be centered Gaussian fields with M and B
satisfying the conditions of Theorem 4.1.1. Assume that, for each t ∈M , the
joint distribution of (f(t),∇f(t), g(t)) is non-degenerate.

Write Cif = Cif (s, t) for the covariance function of f i, Cifj = ∂2Cif/∂sj∂tj

for the covariance function of f ij = ∂f i/∂tj, and Cig for the covariance func-
tion of gi. If

max
i,j

∣∣∣Cifj (t, t) + Cifj (s, s)− 2Cifj (s, t)
∣∣∣ ≤ K |ln |t− s| |−(1+α)

,

max
i

∣∣Cig(t, t) + Cig(s, s)− 2Cig(s, t)
∣∣ ≤ K |ln |t− s| |−(1+α)

,
(4.1.6)

for some finite K > 0, some α > 0 and all |t − s| small enough, then the
conclusions of Theorem 4.1.1 hold.

Outline of a proof of Theorem 4.1.1. We start with δε : RN → R an
approximate delta function, constant on the N -ball Bε(RN ) = {t ∈ RN : |t| <
ε}, zero elsewhere, and normalized so that∫

B(ε)

δε(t) dt = 1. (4.1.7)

We then claim that

Nu(f, g;M,B) = lim
ε→0

∫
M

δε(f(t)− u)1B(g(t)) |det∇f(t) | dt. (4.1.8)

If this is true, then, with no further pretense to rigor, take expectations on
both sides and freely change the orders of limit and expectation to find that

E{Nu} = lim
ε→0

E
∫
M

δε(f(t)− u) 1B(g(t)) |det∇f(t) | dt

=
∫
M

∫
RN2

∫
RK

1B(v) |det∇y|

×
{

lim
ε→0

∫
RN

δε(x− u) pt(x,∇y, v) dx
}
d∇y dv dt,
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where the pt are the obvious densities. Taking the limit in the innermost
integral yields

E{Nu} =
∫
M

∫ ∫
1B(v) |det∇y| pt(u,∇y, v) d∇y dv dt

=
∫
M

E{|det∇f(t)| 1B(g(t))
∣∣ f(t) = u} pt(u) dt,

which is what we wanted to show.
Of course, interchanging the order of integration and the limiting proce-

dure requires justification, and not only is it far from trivial it is in fact so
hard to do that a fully rigorous proof requires a rather different approach.
Again, see the proof of Theorem 11.2.1 of RFG for details. Nevertheless, we
shall assume that, under the conditions of the theorem, the interchange works.

Thus, all that remains is to prove (4.1.8).
To save on notation, and without any loss of generality, we take u = 0.

Consider those t ∈ M for which f(t) = 0, of which we claim (without proof)
that under the conditions of the theorem there is, a.s., only a finite number
and that none lie in ∂M . Consequently, each one can be surrounded by an
open ball, of radius η, say, in such a way that the balls neither overlap nor
intersect ∂M . Furthermore, we can take η small enough so that within each
ball g(t) always lies in either B or the interior of its complement, but never
both.

Let σ(ε) be the ball |f | < ε in the image space Rk of f . From what we have
just claimed follows the fact that we can also choose ε small enough for the
inverse image of σ(ε) in M to be contained within the union of the η spheres.

Furthermore, by the inverse mapping theorem, we can choose ε, η so small
that, for each η sphere in M , σ(ε) is contained in the f image of the η sphere.
The restriction of f to such a sphere will be one-one. Since the Jacobian of
the mapping of each η sphere by f is |det∇f(t)| it follows that we can choose
ε small enough so that

N0 =
∫
M

δε(f(t))1B(g(t)) |det∇f(t) | dt.

This follows since each η sphere in M over which g(t) ∈ B will contribute ex-
actly one unit to the integral, while all points outside the η spheres will not be
mapped onto σ(ε). Since the left-hand side of this expression is independent
of ε we can take the limit as ε→ 0 to obtain (4.1.8), as required. 2

There is another way to prove Theorem 4.1.1 that has also been around, in
one form or another, for many years, and is based on Federer’s coarea formula,
which we met in Section 3.2. The French among you may prefer it. Rewrite
the coarea formula for the case (3.2.4) as∫

RN

( ∑
t: f(t)=u

α(t)
)
du =

∫
RN

α(t) |det∇f(t)| dt,
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assuming that f and α : RN → RN are sufficiently smooth.
Take α(t) = ϕ(f(t))1M (t), where ϕ is a smooth (test) function. (Of course,

α is now no longer smooth, but we shall ignore this for the moment.) The above
then becomes∫

RN
ϕ(u)Nu(f : M) du =

∫
M

ϕ(f(t)) |det∇f(t)| dt.

Now take expectations (assuming this is allowed) of both sides to obtain∫
RN

ϕ(u) E{Nu(f : M)} du

=
∫
M

E {ϕ(f(t)) |det∇f(t)|} dt

=
∫

RN
ϕ(u)

∫
M

E
{
|det∇f(t)|

∣∣f(t) = u
}
pt(u) dtdu.

Since ϕ was arbitrary, this implies that for (Lebesgue) almost every u,

E{Nu(f : M)} =
∫
M

E
{
|det∇f(t)|

∣∣f(t) = u
}
pt(u) dt, (4.1.9)

which is precisely (4.1.5) of Theorem 4.1.1 with the g there identically equal
to 1. Modulo this restriction on g, which is simple to remove, this is what we
need. The problem, however, is that since it is true only for almost every u
one cannot be certain that it is true for a specific value of u.

To complete the proof, we need only show that both sides of (4.1.9) are
continuous functions of u and that the assumptions of convenience made above
are no more than that. This, of course, is not as trivial as it may sound, and
going through the arguments actually leads to virtually the same long list of
conditions that appeared in the statement of the theorem. See [11] for the
details.

While not at all obvious at first sight, hidden away in Theorem 4.1.1 is
another result, about higher moments of Nu(f, g;B,M). In particular, under
additional conditions, it can be shown that

E{Nu (Nu − 1) · · · (Nu − k + 1)}

=
∫
Mk

E
{ k∏
j=1

|det∇f(tj) | 1B(g(tj))
∣∣∣ f̄(t̄) = ū

}
pt̄(ū) dt̄,

where t̄ = (t1, . . . , tk), f̄(t̄) = (f(t1), . . . , f(tk)), and pt̄ is the probability
density of f̄(t̄). Since we shall not need this result in what follows, we send
you to RFG or [11] for further details.
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4.2 Real Isotropic Fields on Rectangles: Euler
Characteristic

Our aim in this section is to give a proof of (4.0.2), which is the special case
of the GKF for real isotropic Gaussian fields on rectangles, and looks only at
the mean Euler characteristic of excursion sets. Modulo some calculus which
is left to you, the proof is complete and self-contained, as is the statement,
for the reader who might want only this result without having to chase back
through the notes for notation.

Theorem 4.2.1. Let f be a real valued, centered, isotropic Gaussian field on
RN with variance σ2 . Denote the first and second order partial derivatives of
f by fi and fij, with ∇f the vector of the fi and ∇2f the matrix of the fij.
Assume that

(i) The joint distributions of (f(t),∇f(t),∇2f(t)) are, for each t ∈ T , non-
degenerate.

(ii)If Cij(s, t) is the covariance function of fij, then

max
i,j
|Cij(t, t) + Cij(s, s)− 2Cij(s, t)| ≤ K |ln |t− s| |−(1+α)

,

for some finite K > 0, some α > 0, and all |t− s| small enough.

Let T =
∏N

1 [0, Tj ], and for finite, real u, consider the excursion set Au ≡
Au(f, T ). With ϕ denoting the Euler characteristic,

E {ϕ (Au)} = e−u
2/2σ2

N∑
k=0

λ
k/2
2

(2π)(k+1)/2σk
Lk(T )Hk−1

(u
σ

)
, (4.2.1)

where the Hermite polynomials Hj were defined at (2.2.5)–(2.2.6), and λ2 is
the second spectral moment (2.6.9) of f . The Lj are the standard, Euclidean,
Lipschitz-Killing curvatures

Lj(T ) =
∑
j1...jk

Tj1 · · ·Tjk , (4.2.2)

the sum taken over the
(
N
k

)
distinct choices of k indices between 1 and N . (cf.

(1.2.12).)

Before starting the proof of Theorem 4.2.1 we recall from Section 3.8 that
there is a way to write ϕ(Au(f, T )) via the number of critical points of f of
various types on the various faces of T . This leads us to some notation:

Firstly, we write ∂kT for the collection of the 2N−k
(
N
k

)
faces of dimension

k in T . As opposed to our previous conventions, in this chapter we take these
faces as closed. Thus all faces in ∂kT are subsets of faces in ∂k′T for all k′ > k.



64 4 The Gaussian Kinematic Formula

Each k-dimensional face J ∈ ∂kT is determined by a subset σ(J) of
{1, . . . , N}, of size k, and a sequence of N − k zeros and ones, which we
write as ε(J) = {εj , j 6∈ σ(J)}, so that

J =
{
t ∈ RN : tj = εjTj , if j /∈ σ(J), 0 ≤ tj ≤ Tj , if j ∈ σ(J)

}
. (4.2.3)

Let Ok denote the
(
N
k

)
elements of ∂kT which include the origin.

Next, to each sequence ε(J), define a corresponding set ε∗(J) of ±1’s,
according to the rule ε∗j = 2εj − 1. Then, with a little rewriting, it follows
from the results of Section 3.8 that

ϕ (Au(f, T )) =
N∑
k=0

∑
J∈∂kT

k∑
i=0

(−1)iµi(J), (4.2.4)

where, for i ≤ dim(J), µi(J) is the number of t ∈ J for which

f(t) ≥ u, (4.2.5)
fj(t) = 0, j ∈ σ(J) (4.2.6)

Ind
(

(−fmn(t))(m,n∈σ(J))

)
= i, (4.2.7)

ε∗jfj(t) > 0, j /∈ σ(J) (4.2.8)

and, as usual, the index of a matrix is the number of its negative eigenvalues.
Thus we can find the mean excursion set Euler characteristic by taking

expectations of each term on the right of (4.2.4). We start with the term for
k = 0, temporarily dropping the requirement (4.2.8).

Lemma 4.2.2. Let f and T be as in Theorem 4.2.1. Set

µk = #{t ∈ T : f(t) ≥ u, ∇f(t) = 0, Ind(−∇2f(t)) = k}. (4.2.9)

Then

E

{
N∑
k=0

(−1)kµk

}
=

|T |λN/2

(2π)(N+1)/2σN
HN−1

(u
σ

)
e−u

2/2σ2
, (4.2.10)

where |T | = LN (T ) =
∏N
j=1 Tj.

Before turning to the proof of the lemma, there are some crucial points
worth noting. The first is that although the definition of the µk depends quite
strongly on the fij , the distributions of which involve fourth order spectral
moments, these do not appear in the final expectation. As will become clear
from the proof, the disappearance of the fourth order spectral moments has
a lot to do with the fact that we compute the mean of the alternating sum
in (4.2.10) and do not attempt to evaluate the expectations of the individual
µk. Doing so would indeed involve fourth order spectral moments. The fact
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that this is all we need is extremely fortunate, for it is actually impossible to
obtain closed expressions for any of the E{µk}.

The second point of interest is that neither (4.2.10) nor any of the results
that build on it depend in any way on the long term decay rate of the covari-
ance function of f . It is not hard to see that this is an immediate consequence
of the additive property (in the sense of (1.2.2)) of the random variables µk.

Proof. To save on notation, we shall assume that σ = λ2 = 1. The extension
to general σ and λ2 is simple.

Direct application of the Kac-Rice metatheorem, Theorem 4.1.1, applied
to each µk separately, yields that

E

{
N∑
k=0

(−1)kµk

}
=

N∑
k=0

∫
T

(−1)kE
{∣∣det(∇2f(t))

∣∣ 1{f(t)≥u,Ind(−∇2f(t))=k}∣∣∣∇f(t) = 0
}
p∇f(t)(0)dt,

where
p∇f(t)(0) = (2π)−N/2

is the density of ∇f(t) at 0.
The fact that f is isotropic implies that the pair (f(t),∇2f(t)) is indepen-

dent of ∇f(t) (cf.(2.6.6) and (2.6.7)) so we can remove the conditioning in the
expectation on the right hand side. This greatly simplifies the calculation.

However, the small miracle that simplifies everything enormously (without
which we would not get such a final simple answer) is the fact that

(−1)k
∣∣det(∇2f(t))

∣∣ 1{Ind(−∇2f(t))=k} = det(−∇2f(t))1{Ind(−∇2f(t))=k},

which implies that

N∑
k=0

(−1)k|det(∇2f(t))| 1{Ind(−∇2f(t))=k} = det(−∇2f(t)).

Applying this, along with stationarity to integrate out t, then dropping
the index t on what remains, we see that

E

{
N∑
k=0

(−1)kµk

}
= (2π)−N/2|T |E

{
det(−∇2f)1{f≥u}

}
= (2π)−N/2|T |E

{
det(−∇2f − fI + fI)1{f≥u}

}
= (2π)−N/2|T |E


N∑
j=0

fN−jdetrj(−∇2f − fI)1{f≥u}

 ,

where, as usual, detrj(A) is the sum of determinants of all j × j principle
minors of A. Here, we have used the standard expansion that, for an N ×N
matrix A,
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det(A+ λI) =
N∑
j=0

λjdetrj(A).

Once again appealing to isotropy, from which it follows that E{f(t)fij(t)} =
−δij (cf. (2.6.5)), it is simple to check that the matrix ∇2f+fI is independent
of f . Therefore,

E

{
N∑
k=0

(−1)kµk

}
= (2π)−N/2|T |

N∑
j=0

E
{
fN−j1{f≥u}

}
E
{

detrj(−∇2f − fI)
}
.

The computation of the expectation of the determinant here is basically
algebra, expanding the determinant, applying Wick’s formula (2.7.5)–(2.7.6),
and again using the fact that E{f(t)fij(t) = −δij . Doing this1 leads to

E

{
N∑
k=0

(−1)kµk

}
= (2π)−N/2|T |E


bN2 c∑
j=0

(−1)jN !
(N − 2j)!j!2j

fN−2j
1{f≥u}


= (2π)−N/2|T |E

{
HN (f)1{f≥u}

}
= (2π)−(N+1)/2|T |

∫ ∞
u

HN (x) e−x
2/2 dx

= (2π)−(N+1)/2|T |HN−1(u) e−u
2/2,

(4.2.11)
where the last line follows directly from the basic properties of Hermite poly-
nomials (cf. (2.2.7)). 2

Proof of Theorem 4.2.1. As in the proof of Lemma 4.2.2, we assume that
σ = λ2 = 1. Consider conditions (4.2.5)–(4.2.7). If we restrict f to the face J ,
then Lemma 4.2.2, modified only to allow for the dimension of J , actually gives
the expected number of points satisfying these three conditions. However, we
also have to allow for the additional constraint (4.2.8).

To do this, let µ̃i(J) denote the number of points t ∈ J satisfying (4.2.5)–
(4.2.7) while EJ(t) denotes the event (4.2.8). We need to compute

k∑
i=0

(−1)iE
{
µ̃i(J)1EJ (t)

}
,

and then sum over the faces J of T . However, once again applying isotropy
gives us that the random variables in (4.2.8) are independent of those in
(4.2.5)–(4.2.7). Therefore, by Lemma 4.2.2, when k ≥ 1,

1 An alternative approach can be based on known results on GUE matrices. See,
for example, the computations in Section 8.4 of [11], which can easily be adapted
to the above situation.
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k∑
i=0

(−1)iE
{
µ̃i(J)1EJ (t)

}
=

|J |
(2π)(k+1)/2

Hk−1(u)e−u
2/2P{EJ(t)}

=
|J |

(2π)(k+1)/2
Hk−1(u)e−u

2/2 1
2N−k

,

where the calculation of P{Ei(t)} follows from symmetry considerations.
It is easy to check from first principles, using the connection between H−1

and Ψ , that the above also holds when k = 0.
From this and (4.2.4) we finally have

E {ϕ (Au(f, T ))} =
N∑
k=0

∑
J∈∂kT

E

{
k∑
i=0

(−1)i µ̃i(J)1EJ (t)

}

=
N∑
k=0

∑
J∈∂kT

|J |
(2π)(k+1)/2

Hk−1(u)e−u
2/2 1

2N−k

=
N∑
k=0

∑
J∈Ok

|J |
(2π)(k+1)/2

Hk−1(u)e−u
2/2,

where we have used the fact that, for each J ∈ Ok, there are 2N−k parallel
faces of T in ∂kT .

This gives (4.4.4) and so the proof is complete. 2

There is an extension to Theorem 4.2.1, which, while not an immediate
corollary of its statement, is easily seen to have an identical proof, modulo
notational changes. We shall require it in a moment, and it is given by

Corollary 4.2.3. Retain the notation and conditions of Theorem 4.2.1, but
now let T be an N -dimensional parallelogram. Then the main result, (4.2.1),
of the theorem still holds, with the only change being that the Lipschitz-Killing
curvatures are now defined accordingly; viz. if T is translated so that the origin
0 is at one of its corners, then

Li(T ) =
∑

J: dim(J)=i, 0∈J

|J |, (4.2.12)

where the J are faces of T with volume |J |.

4.3 Real Isotropic Fields: Lipschitz-Killing Curvatures

In the previous section we saw how to compute the mean Euler characteristic
of the excursion sets of isotropic Gaussian fields on rectangles, and so obtained
a very special case of the GKF. The first step towards greater generality lies
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not in lifting the assumptions on f or the parameter space, but rather on
computing mean Lipschitz-Killing curvatures rather than mean Euler charac-
teristics. At this point we consider the Euclidean Lipschitz-Killing curvatures
of the Steiner and Weyl formulae, (1.2.7) and (3.4.1).

To do this we use the special case of Crofton’s formula known as Hadwiger’s
formula (cf. (3.7.2)) which we recall is given by

Lk(M) =
∫

Graff(N,N−k)

L0(M ∩ V ) dλNN−k(V ). (4.3.1)

where all the terms were defined in Section 3.7. The (easy) extension is then
as follows:

Theorem 4.3.1. Let T be a N -dimensional parallelogram, and f such that
all the conditions of Theorem 4.2.1 hold. Then, for every 0 ≤ j ≤ N ,

(4.3.2)

E {Lj (Au(f, T ))} = e−u
2/2σ2

N−j∑
k=0

[
j + k
k

]
λ
k/2
2

(2π)(k+1)/2σk
Lj+k(T )Hk−1

(u
σ

)
,

where the Lj, on both sides of the equality, are computed with respect to the
standard Euclidean metric on RN . In particular, on the right hand side they
are given by (4.2.2) for rectangles and (4.2.12) for other parallelograms.

Proof. To save on space we shall establish (4.3.2) under the additional as-
sumption that σ2 = 1, and also set

ρj(u) ∆= (2π)−(j+1)/2Hj−1(u)e−u
2/2.

Then Hadwiger’s formula and Corollary 4.2.3 immediately yield

E {Lj(Au(f, T ))} =
∫

Graff(N,N−j)
E {L0 (Au(f, T ) ∩ V )} dλNN−j(V )

=
N−j∑
k=0

λ
k/2
2 ρk(u)

∫
Graff(N,N−k)

Lk(T ∩ V ) dλNN−j(V )

=
N−j∑
k=0

[
j + k
k

]
λ
k/2
2 ρk(u)Lj+k(T ),

and we are done. 2

For an alternative approach to computing the mean Lipschitz-Killing cur-
vatures in the setting of this section see [92].
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4.4 Real Stationary Fields on Rectangles: Euler
Characteristic

In this section we shall see how to extend Theorem 4.2.1 from isotropic Gaus-
sian fields over rectangles to stationary fields. This is still not the full GKF,
but we are getting closer. Unfortunately, it is the last case that we can treat
without getting into differential geometry and curvature integrals.

Consider, therefore, f to be Gaussian, stationary, zero mean, variance σ2

and satisfying the smoothness conditions of Theorem 4.2.1 over the rectangle
T =

∏N
j=1[0, Tj ]. Since f is no longer isotropic, the second spectral moments

λij = E{fi(t)fj(t)} (4.4.1)

will not be as simple as in the isotropic case, and we denote the N×N matrix
of these moments by Λ. Recall that in the isotropic case we had Λ = λ2I, a
fact which simplified many of the computations in Section 4.2.

Let Q be a positive definite square root of Λ−1, so that

Q′ΛQ = I. (4.4.2)

Note that detQ = (detΛ)−1/2. Now take the transformation of RN given
by t → tQ−1, under which the rectangle T transforms to the parallelogram
TQ = {τ : τ = tQ−1 for some t ∈ T} and define fQ : TQ → R by

fQ(t) ∆= f (tQ) .

The new process fQ has covariance function

CQ(s, t) = C(sQ, tQ) = C((t− s)Q)

and so is still stationary, with constant variance σ2. Furthermore, simple dif-
ferentiation shows that ∇fQ = (∇f)Q, from which it follows that

ΛQ
∆= E

{
((∇fQ)(t))′((∇fQ)(t))

}
(4.4.3)

= Q′ΛQ

= I.

That is, the first order derivatives of the transformed process are now uncor-
related and of unit variance. We now show that it is sufficient to work with
this, much simpler, transformed process.

Firstly, we note the crucial fact that the µk of (4.2.9) for f over T are
identical to those for fQ over TQ. Clearly, there is a trivial one-one corre-
spondence between those points of T at which f(t) ≥ u and those of TQ at
which fQ(t) ≥ u. We do, however, need to check more carefully what happens
with the conditions on ∇f and ∇2f .
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Since ∇fQ = (∇f)Q, we have that (∇fQ)(t) = 0 if, and only if, ∇f(tQ)
= 0. In other words, there is also a simple one-one correspondence between
critical points. Furthermore, since ∇2fQ = Q′(∇2f)Q and Q is a positive
definite matrix, ∇2fQ(t) and ∇2f(tQ) have the same index.

Consequently, we can now work with fQ rather than f . While fQ is not
isotropic, it is ‘locally isotropic’ in the sense of Section 2.6.2. More importantly,
if you look back through the proof of Corollary 4.2.1, you will find that nowhere
in the proof did we use the full force of isotropy2, but only local isotropy! Thus
Theorem 4.2.1 can be applied to fQ, as can Theorem 4.2.3.

All that remains, then, to apply Corollary 4.2.3 is to compute the LKCs
of the parallelogram TQ. Using Steiner’s Formula (1.2.7) it is easy geometry
to see that these are given by

Lk(TQ) =
∑
J∈Ok

|J ||detΛJ |1/2,

where the sum is over all the k-dimensional faces of TQ in Ok, itself the
(
N
k

)
elements of ∂kT which include the origin. As for the matrix ΛJ , recall that
each k-dimensional face J ∈ ∂kT has a representation as in (4.2.3) via a subset
subset σ(J) of {1, . . . , N}. Using this representation, we write ΛJ for the k×k
matrix with elements λij , i, j ∈ σ(J). The volume |J | =

∏
i∈σ(J) Ti is the

usual k-dimensional measure of the face J .
The following result is now an immediate consequence of the above and

Corollary 4.2.3.

Theorem 4.4.1. Let f be stationary rather than isotropic, and otherwise as-
sume that all the conditions of Theorem 4.2.1 hold. Then

E {ϕ (Au(f, T ))} = e−u
2/2σ2

N∑
k=1

∑
J∈Ok

|J | |ΛJ |1/2

(2π)(k+1)/2σk
Hk−1

(u
σ

)
+ Ψ

(u
σ

)
.(4.4.4)

4.5 The Induced Metric and the Need for Riemannian
Geometry

The flow of the proofs so far in this chapter has been as follows:

(1) Use Morse theory to express the Euler characteristic of excursion sets via
alternating sums of numbers of critical points of different index.

(2) Use the Kac-Rice metatheorem to find a (complicated, integral) expression
for the expectation.

(3) Show that in the (locally) isotropic case the integral can be evaluated for
fields over rectangles and parallelograms.

2 On the other hand, this is not true of Theorem 4.3.1 where we did need full
isotropy to apply Hadwiger’s Theorem.
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(4) Use Hadwiger’s formula to go from the expected Euler characteristic to
expected Lipschitz-Killing curvatures.

(5) Use a simple transformation to turn the Euler characteristic computation
for stationary fields on rectangles into problem about locally isotropic fields
on parallelograms.

To reach the level of generality that we really want for the Gaussian kine-
matic formula, we need to do the following:

(a) Weaken the assumption of stationarity to one of constant variance.
(b) Move from rectangles to general parameter spaces.
(c) Move from real valued fields to vector valued ones.

It turns out that Step (a) involves the main conceptual leap, after which
(b) and (c) are (not small) strides forward. The trick in solving (a) is to find
a way to turn our non-isotropic, non-stationary random fields, which may
now also be defined on a stratified manifold, into locally isotropic ones. Local
isotropy, after all, was the key to permitting explicit computation in (3).

As already noted in Section 2.6.2, even on RN there is no simple trans-
formation to either isotropy or even local isotropy for general non-stationary
fields. The basic problem is that different transformations may be required in
different parts of the parameter space, and patching them together to make
something which is globally well defined may not be easy. In fact, it is not
easy, but under the assumption of constant variance there is a technique for
doing it that works well for our needs, and this involves replacing the usual
Euclidean inner product between vectors by an appropriate Riemannian met-
ric. Thus, while we do not transform the parameter space at all, we change
the way we measure things on it.

As we discussed briefly in Section 3.1, a Riemannian metric g on a manifold
M is a family, {gt}t∈M , of inner products on the tangent spaces TtM . Keeping
M a nice set within RN for the moment, it suffices to define the metric on unit
vectors parallel to the axes. Thus, if t ∈M and we define the vector based at
t and parallel to the j-th axis as

Ej(t) = t+ ej ,

where, as usual, ej is the vector with 1 in the j-th position and 0 elsewhere,
then a Riemannian metric which is suited to our purposes is defined on the
Ej by

gt (Ei(t), Ej(t)) = (σ−2Λ(t))ij
∆= σ−2 Cov

(
∂f(t)
∂ti

,
∂f(t)
∂tj

)
(4.5.1)

≡ σ−2E {Ei(t)f(t) · Ej(t)f(t)} ,

and extended to other vectors by linearity. We call gt the metric induced by
the random field f . Note that to define this metric we have assumed that f
has constant variance σ2. However, neither stationarity nor isotropy is needed
for the definition to make sense.
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In the isotropic and locally isotropic cases, the induced metric is the usual
Euclidean metric, multiplied by a factor of λ2, the second spectral moment.
In the stationary case,

gt(U, V ) =
〈
σ−1UΛ1/2, σ−1V Λ1/2

〉
=
〈
U, σ−2V Λ

〉
,

where the right hand inner products are the usual Euclidean one and Λ is the
matrix (4.4.1) of second order spectral moments. In both the stationary and
isotropic cases gt is independent of t.

Note that the induced metric is scale independent, since if we multiply f
by σ then both the variance of f and the covariances of its derivatves will
change by a factor of σ2 leaving g is unchanged. Thus g is purely a measure
of the spatial variation of of f .

In the case of a random field defined on a general manifold M , we similarly
define the induced metric by

gt (Xt, Yt)
∆= E {Xtf(t) · Ytf(t)} , Xt, Yt ∈ TtM.

Recall now from Section 3.1 that Riemannian metrics determine a notion
of volume. As a consequence, given a Riemannian metric and a nice enough
set M , it is also possible to define Lipschitz-Killing curvatures Lj(M) which
correspond to the metric. All one needs to do is take the original definition
(3.4.11) of Lipschitz-Killing curvatures, and interpret the curvature tensor,
R̃, the second fundamental form S̃ and Hausdorff measures H as Riemannian
objects, induced on the the manifold and its tangent bundle by the metric.
While our original approach to Lipschitz-Killing curvatures came from tube
formulae, there is no reason to believe that, on a general Riemannian manifold,
a tube formula involving these new, Riemannian, Lipschitz-Killing curvatures
will hold. Nevertheless, there is no problem with defining them.

For the full theory, and interesting examples of computation of the
Lipschitz-Killing curvatures, you should go to either RFG or ARFG. But we
have seen some examples already.

For example, when looking at the supremum distribution of the cosine
random field in Section 2.2 we came up with the expression (cf. (2.2.2))

∑
j1...jk

σ−k
k∏
i=1

λjiTji . (4.5.2)

This is precisely Lk(T ) (T is the usual rectangle) where Lk is calculated
with respect to the metric induced by the cosine field. In general, (4.5.2) is
appropriate for a random field with a matrix of second order spectral moments
of the form diag(λjj) = diag(λ2

j ).
Similarly, in Theorem 4.4.1 we met the expression

σ−k
∑
J∈Ok

|J | |ΛJ |1/2, (4.5.3)
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(cf. (4.4.4).) But it is easy to check from the above descriptions that this is,
once again, precisely Lk(T ), calculated with respect to the metric induced by
the stationary random field of the theorem.

Now recall (3.5.3), which connected Hermite polynomials with Gaussian
Minkowski functionals, and we can rewrite Theorem 4.4.1 as follows.

Theorem 4.5.1. Let T be an N -dimensional parallelogram, and assume that
f satisfies the conditions of Theorem 4.2.1 assuming stationarity rather than
isotropy and variance σ2 = 1. Then

E {ϕ (Au(f, T ))} =
dimT∑
j=0

(2π)−j/2Lj(T )Mj([u,∞)), (4.5.4)

where the Lipschitz-Killing curvatures Lk(M) are computed with respect to
the Riemannian metric induced on T by f .

Actually, with Theorem 4.5.1 established, it does not require a lot of imag-
ination, or faith, to believe that what is true for parallelograms T must also
be true for regular stratified manifolds M . Indeed, it is true, and even with-
out the condition of stationarity3, although it takes some work to prove it.
However, before moving to more general parameter spaces, we need an appro-
priate definition of regularity for random fields over stratified manifolds. This
is given by

Condition 4.5.2 (Regularity of a random field) Let M be a regular strat-
ified manifold, and f be a centered Gaussian field over M . Let A = (Uα, ϕα)α∈I
be a countable atlas for M . Then we say that f is regular if, for every α, the
Gaussian field fα = f ◦ ϕ−1

α on ϕα(Ua) ⊂ RN satisfies conditions (i) and (ii)
of Theorem 4.2.1 for each T = ϕα(Uα), f = fα and some K = Kα > 0.

Note that if M is a rectangle, then the definition of regularity reduces to
the conditions in Theorem 4.2.1. Among other things, Condition 4.5.2 ensures
that the sample functions of f are, with probability one, Morse functions over
M .

Theorem 4.5.1, with the parallelograms T replaced by regular stratified
manifolds, is a far more general special case of the Gaussian kinematic formula
than any of the preceeding theorems of this chapter. In particular, we have
finally seen why one needs the induced Riemannian metric.

However, we still have steps (b) and (c) above to confront in order to move
to full generality. This is the material of the following, final, sections of this
chapter.
3 This is good, since ‘stationarity’ is not easy to define on a general manifold, for

which one would need there to be a group action on M with regard to which the
distribution of f is shift invariant. Obviously, not all manifolds possess such a
group structure.
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4.6 The Canonical Isotropic Process on the Sphere

In this section we shall show how to tackle (b) and (c) of the preceeding
section, by indicating how to prove a version of the Gaussian kinematic for-
mula for a vector valued random field on nice subsets of the sphere. The main
restriction will be that we shall work with only a very special process, the
canonical, isotropic Gaussian process on the sphere. However, we have al-
ready seen in Section 2.4 that this process provides a model for many others,
a point that we shall return to later in this chapter when we look at more
general results.

Recall from Section 2.4 that the real valued canonical isotropic Gaussian
process on the l-sphere S(Rl) is defined as the centered Gaussian process on
S(Rl) with covariance function

E {f(s)f(t)} = 〈s, t〉, (4.6.1)

where 〈 , 〉 is the usual Euclidean inner product. This process can be realised
as

f(t) = 〈ξ, t〉,

where ξ ∼ N(0, Ik×k). We shall be interested in a k-dimensional version of
this process, which we still denote by f , for which the real valued coordinate
processes are independent centered processes satisfying (4.6.1). We care about
the excursion set

AD = AD(f,M) = M ∩ f−1(D),

where bothM andD are regular stratified manifolds,M ⊂ S(Rl) andD ⊂ Rk.
Our aim now is to try to establish the full Gaussian kinematic formula (4.0.1)
in this setting.

Our approach will be a little circuitous, but along the way we shall see
that the Gaussian kinematic formula is closely related to the kinematic fun-
damental formula (1.3.9) from which relationship comes its name.

4.6.1 A Model Process

We start with a family, {y(n))}n≥l, of smooth Rk valued processes on S(Rl).
The limit of these processes will be the canonical Gaussian processes, but, as
we shall soon see, they are simpler to handle than their limit. To define the
family, for each n ≥ l we first embed S(Rl) in S(Rn) in the natural way, by
setting

S(Rl) = {t = (t1, . . . , tn) ∈ S(Rn) : tl+1 = · · · = tn = 0} .

We next take the rotation group, O(n), thinking of it as the group of orthonor-
mal n × n matrices, equipped with its normalized Haar measure µn, as our
underlying probability space. Then the n-th process y(n) is defined by
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y(n)(t, gn) ∆= πn,k
(√
ngnt

)
, (4.6.2)

where t ∈ S(Rl), gn ∈ O(n) and πn,k is the projection from S√n(Rn) to Rk
given by

πn,k(x1, . . . , xn) = (x1, . . . , xk), (4.6.3)

An example is given in Figure 4.6.1

Fig. 4.6.1. The pre-Gaussian process y(2) from a (one-dimensional) subset of a
great circle to R2.

To see why the y(n) should converge to the Rk valued canonical Gaussian
process on Rl, we need a version of what is generally known as the Poincaré
limit theorem (cf. [29] for some history) as well as a more recent, more powerful
version due to Diaconis, Eaton and Lauritzen [30].

The classic Poincaré limit theorem states that if ηn = (ηn1, . . . , ηnn) is
uniformly distributed on S√n(Rn) and k ≥ 1 is fixed, then the joint distri-
bution of (ηn1, . . . , ηnk) converges weakly to that of k independent standard
Gaussians as n→∞. That is, if

Xk,n
∆= πn,k(ηn),

then, as n→∞, and for k fixed

Xk,n
L→ N(0, Ik×k), (4.6.4)

where L→ denotes convergence in distribution.
This can be proven either by realising η as a vector of standard normal

random variables conditioned to lie on the sphere, or via a direct calculus
argument.

Convergence in distribution can be lifted to total variation convergence,
and from there to the convergence of the finite dimensional distributions of
y(n) to those of f . More importantly, for functionals F of these processes for
which E{|F (y)|} <∞, we have [29, 30]

lim
n→∞

E
{
F
(
y(n)

)}
= E {F (y)} . (4.6.5)
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As we are about to see, it is remarkably straightforward to compute the
mean Lipschitz-Killing curvatures of excursion sets of the y(n), using only the
kinematic fundamental formula on S√n(Rn). This is the content of the follow-
ing subsection. We shall then wave our hands to send n → ∞ to ‘complete’
the proof for the canonical Gaussian process.

4.6.2 The GKF for the Model Process

Of course, there is nothing Gaussian about the model processes y(n), so the
G in the GKF of the section title is a little misleading. Nevertheless, we shall
try for a parallel result, and thus obtain a key lemma of major importance.
The lemma is is the following, under the usual conditions on M and D.

Lemma 4.6.1. Let y(n) be the model process (4.6.2) on M ⊂ S(Rl), with
n ≥ l. Then4, for D ⊂ Rk,

E
{
L1
i (M ∩ (y(n))−1D)

}
(4.6.6)

=
dimM−i∑
j=0

(
nj/2

[
n− 1
j

]−1
)[

i+ j
j

]
L1
j+i (M)

Ln−1

n−1−j

(
π−1
n,k(D)

)
snn(n−1)/2

=
dimM−i∑
j=0

si+1

si+j+1
L1
j+i (M)

Ln−1

n−1−j

(
π−1
n,k(D)

)
sn−jn(n−1−j)/2 ,

where

sn =
2πn/2

Γ (n2 )
(4.6.7)

is the surface area of the unit ball in Rn.

Proof. Since π−1
n,k(D) is a nice domain in S(Rn), it follows from the construc-

tion of y(n) (see Figure 4.6.1) that

4 The meaning of π−1
n,k(D) in (4.6.6) is a little subtle. The problem is that, for all

t ∈ S√n(Rn), πn,k(t) ∈ B√n(Rn), which may, or may not, cover D. Thus, since

π−1
n,k(D) =

˘
t ∈ S√n(Rn) : πn,k(t) ∈ D

¯
,

it follows that π−1
n,k(D) may be only the inverse image of a subset of D. However,

as long as D has finite diameter, this problem will disappear for n large enough.
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E
{
L1
i (M ∩ (y(n))−1D)

}
=
∫
O(n)

L1
i (M ∩ (y(n))−1D)(gn)dµn(gn)

=
∫
O(n)

L1
i

(
M ∩ n−1/2g−1

n

(
π−1
n,k(D)

))
dµn(gn)

= n−i/2
∫
O(n)

Ln
−1

i

(√
nM ∩ g−1

n

(
π−1
n,k(D)

))
dµn(gn)

=
1

snn(n−1+i)/2

∫
Gn,n−1

Ln
−1

i

(√
nM ∩ gn

(
π−1
n,k(D)

))
dνn,n−1(gn),

where the second last line follows from the scaling properties of Lipschitz-
Killing curvatures (e.g. (1.2.13)) and the last is really no more than a nota-
tional change, using the definition (3.6.1) of νn,λ.

However, applying the kinematic fundamental formula (3.6.2) to the last
line above, we immediately have that it is equal to

dimM−i∑
j=0

nj/2
[
i+ j
i

] [
n− 1
j

]−1 Ln−1

j+i (
√
nM)

n(i+j)/2

Ln−1

n−1−j

(
π−1
n,k(D)

)
snn(n−1)/2

=
dimM−i∑
j=0

nj/2
[
n− 1
j

]−1 [
i+ j
j

]
L1
j+i (M)

Ln−1

n−1−j

(
π−1
n,k(D)

)
snn(n−1)/2

,

which proves the lemma. 2

Lemma 4.6.1 is starting to take the form of the Gaussian kinematic formula
(4.0.1). The combinatorial flag coefficients are in place, as are curvatures.
Admittedly, we have L1

j+i curvatures rather than the Lj+i, but since our
parameter space is part of a sphere that is to be expected. The important fact
is that on the right hand side of the equation we have already managed a split
into product form, each factor of which depends on the underlying manifold
M or the set D, but not both.

We cannot over-emphasise how important and yet how simple is Lemma
4.6.1. The simplicity lies in the fact that, despite the preponderence of sub-
scripts and superscripts, the proof uses no more than the kinematic funda-
mental formula and a few algebraic manipulations. Of course, the price that
we have paid for this simplicity is that we have a result only for a very special
process, and not for the Gaussian processes of central interest to us. However,
these are obtainable as appropriate limits of the y(n), as we shall now see.

4.6.3 Back to the Canonical Process

Suppose we send n → ∞ in (4.6.6), which by Poincaré’s limit is effectively
equivalent to replacing the model process y(n) with a Rk valued canonical
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Gaussian f . Then, in order for E{Lj(M ∩ f−1D)} to be finite for the limit
process f , we would like to have the following limits existing for each j <∞:

ρ̃j(D) ∆= lim
n→∞

nj/2
[
n− 1
j

]−1 Ln−1

n−1−j

(
π−1
n,k(D)

)
snn(n−1)/2

. (4.6.8)

A Stirling’s formula computation shows that if the limit here exists, then

ρ̃j(D) = (2π)−j/2[j]! lim
n→∞

Ln−1

n−1−j

(
π−1
n,k(D)

)
snn(n−1)/2

. (4.6.9)

Sending n→∞ in Lemma 4.6.1 and applying Poincaré’s limit (4.6.5), we
see that, if E

{
|L1
i (M ∩ f−1D)|

}
<∞, then

E
{
L1
i (M ∩ f−1D)

}
= lim

n→∞
E
{
L1
i (M ∩ (y(n))−1D)

}
=

dimM−i∑
j=0

[
i+ j
i

]
L1
j+i(M)ρ̃j(D). (4.6.10)

This is almost (4.0.1), the result that we are trying to prove. Again, the
combinatorial flag coefficients are in place and the move from the L1

j+i to
the Lj+i is easily accomplished via (3.4.23) and (3.4.24). Thus, at the cost of
perhaps changing the definitions of the ρ̃j(D), we could drop the superscript
1 on both sides of (4.6.10).

All that remains to show is that (new) ρ̃j(D) are equal to (2π)−j/2Mγ
j (D),

and we shall have

Theorem 4.6.2. Let f : S(Rl) → Rk be the k-dimensional canonical Gaus-
sian process, and M ⊂ S(Rl) and D ⊂ Rk be regular stratified manifolds.
Then

E {Li (AD(f,M))} =
dimM−i∑
j=0

[
i+ j
j

]
(2π)−j/2Li+j(M)Mγ

j (D). (4.6.11)

Unfortunately, showing that ρ̃j(D) = (2π)−j/2Mγ
j (D) is a rather long and

tricky task, involving some delicate (Riemannian) spherical geometry. You can
find all the details in RFG.

4.7 Fields with Finite Expansions

Recall once more the arguments of Section 2.4, where we saw that virtually any
unit variance Gaussian process f with an orthonormal expansion of order l <
∞ can be realised as the canonical isotropic process, which we denoted there
and will denote here as f̃ , on an appropriately chosen subset of S(Rl). In fact,
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if f is defined over a regular stratified manifold M , then the corresponding
subset of S(Rl), which we denote by ϕ̃(M) for consistency with the notation
of Section 2.4, is also a regular stratified manifold. The relationship was

f(t) = f̃ (ϕ̃(t)) , t ∈M, ϕ̃(t) ∈ ϕ̃(M) ⊂ S(Rl) (4.7.1)

In Section 2.4 we used this fact to study the distribution of the supremum
of f on M by relating it to that of f̃ on ϕ̃(M). It is natural to try the same
approach for the Gaussian kinematic formula, and, in fact, it works.

Note first that the excursion sets of f and f̃ are related by the fact that
AD(f̃ , ϕ̃(M)) = ϕ̃(AD(f,M)) and so, as long as ϕ̃ is smooth enough (C2 and
1–1 suffices) it is easy to relate the Lipschitz-Killing curvatures of AD(f,M)
to those of AD(f̃ , ϕ̃(M)). Their Euler characteristics, for example, will be
identical. As far as the others are concerned, the Lipschitz-Killing curvatures
of a set A ∈ ϕ̃(M), computed with respect to the usual Euclidean metric
on S(Rl), will be identical to those of ϕ̃−1(A) ∈ M computed with respect
to the Riemannian metric on M which is the pull-back by ϕ̃−1 to M of the
Euclidean metric on ϕ̃(M). Since another calculation like (2.4.2) shows that
this is precisely the metric induced on M by the process f we have that, if
A ⊂M , then

Lfj (A) ≡ L efj (ϕ̃(A)),

where superscripts have been added to emphasise that the Lipschitz-Killing
curvatures on the left are computed with respect to the metric induced by
f on M , while on the right they are computed with respect to the metric
corresponding to f̃ on S(Rl); viz. the usual Euclidean metric.

These observations, along with Theorem 4.6.2 actually suffice to establish
the full Gaussian kinematic formula of the following section for all processes
satisfying the assumptions of Theorem 4.8.1 which also have a finite expansion.

The natural question to ask now is therefore whether or not we can extend
this approach to processes without a finite expansion, thereby avoiding all
the Morse theoretic computations which are needed in RFG to establish the
general result. The only truly honest answer we have to this is “We have not
been able to do so, although we have tried”. Also true is the claim that “We
doubt it is possible”. But doubts such as these are often ephemeral.

4.8 The GKF in the General Case

We are now ready to state the Gaussian kinematic formula for the most general
case for which we know it to be true.

Theorem 4.8.1. Let M ⊂ RN and D ⊂ Rk be regular stratified manifolds.
Let f = (f1, . . . , fk) : M → Rk be a vector valued random process, the compo-
nents of which are independent, identically distributed, real valued, Gaussian
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processes, regular in the sense of Condition 4.5.2, and with zero mean and
constant unit variance. Then

E
{
Li
(
M ∩ f−1(D)

)}
=

dimM−i∑
j=0

[
i+ j
j

]
(2π)−j/2Li+j(M)Mγ

j (D), (4.8.1)

where the Lj, j = 0, . . . , N are the Lipschitz-Killing measures of M with re-
spect to the metric induced by the fi, and theMγ

j are the Gaussian Minkowski
functionals on Rk.

We are not going to try to prove Theorem 4.8.1 here. The proof, however,
relies on an old technique from integral geometry that, in the context of our
problem, argues as follows: We want to prove Theorem 4.8.1, in particular,
(4.8.1). Suppose we could show that there exist functions ρij on nice sets
D ∈ Rk independent of the distribution of f and the topology of M , such
that

E
{
Li(M ∩ f−1(D)

}
=

dimM−i∑
j=0

Li+j(M) ρij(D). (4.8.2)

Then, in order to identify the function ρij , we could choose a parameter
space and random process that were simple enough to enable us to compute
E
{
Li(M ∩ f−1(D)

}
in full. Writing it in the form of (4.8.2) would then allow

us to determine the ρij , and so we would have the result in full generality.
In fact, this is precisely what we have done, by working with the canonical
Gaussian process on the sphere.

All that remains, therefore, for us to have a full proof of Theorem 4.8.1 is
to prove (4.8.2). The proof of this starts along the lines of that for Theorem
4.2.1, where we looked at isotropic fields on rectangles. That is, is starts with
some Morse theory and an attempt to compute the mean value of the Eu-
ler characteristic. The detailed computations very rapidly become extremely
complicated, although one can get them to the point that (4.8.2) appears,
albeit only with i = 0; viz. only for the Euler characteristic. To move from the
Euler characteristic to general Lipschitz-Killing curvatures one needs an argu-
ment akin to the Crofton/Hadwiger formula argument of Section 4.3, which
we applied to a similar end in the Euclidean, isotropic case. Now, however, we
no longer have isotropy, nor is the setting necessarily Euclidean. Thus, in RFG
a new kind of Crofton formula is developed, for Riemannian manifolds, which
solves the problem. This gives (4.8.2) for all Lipschitz-Killing curvatures, and
we are done.

For later reference, here is an immediate corollary of Theorem 4.8.1.

Corollary 4.8.2. Under the conditions of Theorem 4.8.1, with k = 1,

E {ϕ (Au(f,M))} = e−u
2/2

dimM∑
j=0

(2π)−(j+1)/2Lj(M)Hj−1(u). (4.8.3)
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4.9 Not Just Excursion Sets

Before we leave the theory of the Gaussian kinematic formula for applications,
there is one, rather important, aspect to it that deserves noting, and is easily
missed at first reading. Recall that in Theorem 4.8.1 f is a (random) mapping
of a N -dimensional parameter set into a k-dimensional parameter space. We
never said much about the dimension of the set D, but note that there is
no need for it to be of full dimension in Rk. If dim(D) ≤ k, then, since f is
smooth,

dim
(
M ∩ f−1D

)
= dim(M) + k − dim(D),

with probability one. Thus, for example, if dim(D) < k, then M ∩ f−1D will
be a submanifold of M , and so the information given by its Lipschitz-Killing
curvatures is of particular interest.

The case which we have discussed in most detail is that for which k = 1
and D is a semi-infinite interval [u,∞). Then the Gaussian kinematic formula
gives information about the mean geometry of excursion sets. However, it
can also be applied directly to the boundary ∂D rather than D itself, giving
information about the boundary of the excursion set. This kind of problem has
been studied in some detail by Wschebor and others (e.g. [93]) with techniques
somewhat different to those used to study the excursion sets themselves. The
Gaussian kinematic formula, however, includes all these scenarios in a single,
unified, result.

4.10 Infinite Dimensions

As these words are being written, Jonathan Taylor and Sreekar Vadlamani are
dotting the i’s and crossing the t’s in the proofs in an important paper [82]
that gives an infinite dimensional variant of the Gaussian kinematic formula.

Their result, which involves a heavy dose of stochastic analysis à la Malli-
avin, is too technical to even quote here, without developing a considerable
amount of background and notation. Nevertheless, it is worthwhile spend-
ing a little of the publisher’s ink and investing a little of your attention to
understand what a result like this might look like, and why it is important.

The Gaussian kinematic formula treated Gaussian processes from a finite
dimensional parameter space M to Rk. However, there are many examples
in both pure and applied probability in which it is natural to take k = ∞.
For example, to each point t ∈M we might associate the entire realisation of
another Gaussian process, say {ft(s)}s∈M ′ . A natural case would be rewriting
a space-time process f(t, s), t ∈M , s ∈ [a, b] as

ft(s)
∆= f(t, s),

so that the path at the point t is {ft(s)}s∈[a,b].
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A version of the Gaussian kinematic formula for such a process would look
at the expectations

E {Lj ({t ∈M : ft ∈ D)} , (4.10.1)

where D is now a nice set in the function space in which the ft(·) take their
values. Although, in this setting, D will typically be infinite dimensional, by
the principle of generalisation by mathematical optimism the corresponding
Gaussian kinematic formula (4.6.11) should look the same.

In fact, it does not. However, it is no longer clear what the Lj(M) and the
Mγ

j (D) are.
If f is, in an appropriate sense, stationary and isotropic, then by Had-

wiger’s theorem (cf. (1.2.14)) the Lj(M) should be the usual, Euclidean
Lipschitz-Killing curvatures. Otherwise, the are going to have to be, once
again, determined by a Riemannian metric, this time involving (Malliavin)
derivatives of f .

However, even in the stationary, isotropic case, the meaning of theMγ
j (D)

is still not clear. However, as in the finite dimensional case, there exists a tube
formula for infinite dimensional Gaussian measures, and this can be used the
define corresponding Gauss Minkowski functionals. In many ways, this formula
is the natural extension of Weyl’s tube formula to infinite dimensions, and so
of intrinsic geometric interest. Additional arguments also show that if µ is an
additive functional on sets in R∞ such that for any A ∈ RN , N finite, µ is
rotation invariant, then µ has a representation as a sum of Mj ’s. This gives
an infinite dimensional version of Hadwiger’s theorem.

The details are far from trivial, but make for fascinating reading. See [82]
for more.
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On Applications: Topological Inference

One of the most rewarding aspects of working on random field geometry is
that one not only gets to do nice mathematics (an adjective with which we
assume you agree if you have got this far in the notes) but one also gets to see
the theory applied. Furthermore, the time delay from theory to applications
is often measured in months, rather than the years or decades that typically
link theory and practice. This close connection works in both directions: As
new theory leads to new applications, new subject matter needs lead to the
development of additional theory.

It is not possible to talk about this interaction without mentioning the late
Keith Worsley, and his unique and fundamental contributions to the theory
and applications of random fields.

Keith was primarily a biostatistican, and devoted the last two decades
of his life to the development of methodologies for the statistical analysis of
brain images. On the one hand, he worked closely with the medical imaging
community, and on the other he worked with probabilists, applying their re-
sults in statistical practice, adapting them when necessary, and proving his
own when the theoreticians were too slow for him. His unique ability to cross
disciplines, and his effusive personality which enabled him to bring together
people of very different backgrounds and interests, is sorely missed.

This chapter, since it is probably the one he would most have enjoyed
reading, is dedicated to his memory.

In it we plan to give brief descriptions of a small number of applications
of the theory of the preceeding chapters. Many of these have to do with
thresholding issues, others with specific problems of statistical inference. Since
both of these classes of applications rely on topological formulae they can be
generically described as examples of topological inference, a term which, to
the best of our knowledge, was first coined by Karl Friston. As we shall see
in Chapter 6 this concept still covers many unexplored areas.

The applications we shall consider come from the areas of brain imaging
and cosmology, but there are many more. As one might imagine, oceanogra-
phy is rich in examples of time-space random fields, and the kind of theory
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that these notes contain has been applied there very richly. Indeed, much of
it began there, with the fundamental papers of Longuet-Higgins (e.g. [63, 64])
which gave very precise formulae for the expected number of critical and
other specular of isotropic Gaussian fields in two and three dimensions. For
a recent, very applied, paper looking at oceanographic data from a geometric
viewpoint see [36]. There is also a wealth of additional applications in many
areas of physics, including using Gaussian random field geometry to under-
stand quantum chaos. A useful recent survey from the point of view of physics,
with many useful references, is [28].

Meanwhile, the examples in this chapter should give you a limited idea
of what can be done with topological inference. Hopefully, we shall one day
finish ARFG, which will give a much fuller overview of applications, and also
of Keith’s contributions.

5.1 Local structure of extrema and the Euler
characteristic heuristic

One of the main applications of the Gaussian kinematic formula has been its
application in what has often been called the Euler characteristic heuristic.
For many Gaussian processes, this is no longer a heuristic, because of the
following theorem1 in which, as usual, Euler characteristics are denoted by ϕ.

Theorem 5.1.1. Let M and f be as in Theorem 4.8.1. Then there exists a
constant σ2

c > 0, dependent on the distribution of f and the geometry of M ,
such that

(5.1.1)

lim inf
u→∞

−u−2 log
∣∣∣∣E {ϕ (Au(f,M))} − P

{
sup
t∈M

f(t) ≥ u
}∣∣∣∣ ≥ 1

2

(
1 +

1
σ2
c

)
.

Note that the importance of this result lies in the fact that while there are
no known expressions for the exceedence probabilities P{supM f ≥ u}, we have
worked hard to develop explicit expressions for the mean Euler characteristic
E{Au(f,M)}.
1 For more details on this result see, for example, Chapter 14 of [8]. There you will

also find information on the term σ2
c . For example, if f is isotropic on RN , with

unit variance and second spectral moments and monotonic covariance, then

σ2
c = Var

„
∂2f(t)

∂t21

˛̨̨
f(t)

«
=

∂4ρ(t)

∂t41

˛̨̨
t=0
− 1.

That is, σ2
c is often explicitly computable. There is a long history of results of

this kind, and you can find approaches somewhat different to that of [8] in [68]
and [11].
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A little less formally, (5.1.1) states that there exist constants C and α =
1 + σ2

c > 1 such that, for large enough u,∣∣∣∣E {ϕ (Au(f,M))} − P
{

sup
t∈M

f(t) ≥ u
}∣∣∣∣ ≤ Ce−αu2/2. (5.1.2)

The explicit expressions for E {ϕ (Au(f, T ))} developed in Chapter 4 show us
that we can rewrite (5.1.2) as

P
{

sup
t∈M

f(t) ≥ u
}

= C0Ψ (u) + e−u
2/2

N∑
j=1

Cju
N−j + o

(
e−αu

2/2
)
, (5.1.3)

where the Cj are constants depending on the parameters of f and the geometry
of M , and N = dim(M).

The final term in this expression is quite remarkable, for, if we think of
the right hand side as an expansion of the form

C0Ψ (u) + e−u
2/2

N∑
j=1

Cju
N−j + error, (5.1.4)

it would be natural to expect that the error term here would be the ‘next’ term
of what seems like the beginning of an infinite expansion for the exceedence
probability, and so of order2 u−2e−u

2/2. However (5.1.4) indicates that this
is not the case. Since α > 1, the error is actually exponentially smaller than
this. Hence one can expect this approximation to work well in practice, as in
fact it does.

So far, everything we have said in this chapter, bar, perhaps, the previous
sentence, is rigorous. What, then, is the Euler characteristic heuristic? The
heuristic lies in replacing exceedence probabilities by mean Euler characteris-
tics, even for fields for which there is no rigorous parallel to Theorem 5.1.1,
and, in all cases, without really knowing how large the level u has to be.

Experience, and simulations, have shown that the Euler characteristic
heuristis works remarkably well. In the Gaussian case, u = 2σ seems to be
close enough to infinity for the mean Euler characteristic to approximate the
true exceedence probability with an error of no more than .005, or relative er-
ror of no more than 10%. What is more important, is that the heuristic seems
to work well even for non-Gaussian fields, even though we are still lacking a
rigorous theorem which proves that this should be the case.

To understand why3 the heuristic works, we need to consider the behaviour
of random fields at high levels. The path to this is via what are known as Palm

2 Note that Ψ(u) itself is O(u−1e−u
2/2).

3 Such understanding is quite different to proving things. The proof of Theorem
5.1.1 does not just tighten up the following argument. It is, unfortunately, long,
dry, and technical.



86 5 On Applications: Topological Inference

measures which describe the structure of a random field conditional on the
occurrence of some special event, such as a local maximum, or level crossing
of a particular kind, occurring at a chosen point. The resulting conditional
fields are described by what are generally known as Slepian models, or Slepian
processes, after their discoverer, David Slepian. (cf. [55, 75]) for Gaussian
processes on R and Lindgren [62] for Gaussian fields.)

While we shall not go into details here4 consider the following useful ex-
ample. Suppose that f is a stationary, centered, unit variance, Gaussian field
on RN , regular in the sense of Condition 4.5.2. As usual, Λ is the matrix of
second spectral moments. Then, conditional on f having a local maximum of
height u at the point t = 0, with probability approaching one as u → ∞ it
has the following representation in a neighbuorhood of the origin:

f(t) = u − u

2σ
tΛt′ + O (1) . (5.1.5)

Now argue as follows, all with ‘high probability’: At high levels, at least
in the neighbourhood of a local maximum, (5.1.5) shows that Gaussian fields
are approximately parabolic. Therefore, ignoring boundary effects, their high
level excursion sets are made up of a number, Nu say, of approximately elliptic
components, each of Euler characteristic one. Consequently, ϕ(Au) and Nu are
roughly equivalent, as are their means. Now suppose that the level u is high
enough that P{supM f ≥ u} ≈ P{Nu ≥ 1} are small, and that P{Nu ≥ 2} is
negligible compared to both of these. This leads to

P
{

sup
t∈M

f(t) ≥ u
}
≈ P {Nu ≥ 1} (5.1.6)

≈ E {Nu}
≈ E {ϕ (Au)} .

It is precisely this sequence of approximations that is the the Euler charac-
teristic heuristic, and the basis of the argument lies on two assumptions:

(i) Above high levels, the structure of the random field is simple enough that
components of the excursion set with have Euler characteristic one with
high probability.

(ii) The probability that the random field will exceed a high level in two or
more disjoint regions is negligible in comparison to the probability that it
will do it once.

There are many variations of (5.1.5) for non-Gaussian fields. Typically,
they are not as simple as in the Gaussian case, but it still follows that the
individual connected components of the excursion set are simple. One can also
convincingly argue that (ii) holds. (“If the level is high, then it must be hard
to exceed it even in one region, and so this has small probability. To exceed
4 See Chapters 6 of either [2] or, better still, [9] for more details.
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it in two regions must have a probability that is the square of this (assuming
appropriate covariance decay) and so of much smaller order.”)

Consequently, it is reasonable, and practical, to argue that an approxima-
tion like (5.1.2) holds for a wide variety of random fields although, obviously,
the precise form of the bound on the right hand side is only expected to hold
in the Gaussian case. This argument is the Euler characteristic heuristic in
full generality.

Of course, if the argument above is correct, there must be other random
variables that can be approximated by the Euler characteristic of the excursion
set Au. Indeed, there are, and these include the number of critical points
above u, the number of local maxima above u, and the number of connected
components ofAu. In each of these cases it is impossible to obtain a closed form
expression for their expectation, but, on the other hand, an approximation
akin to (5.1.2) is either known, or assumed, to hold. See Chapter 5 of ARFG for
more details. If you are computationally oriented, you may also be interested
in [6], which develops tools for the efficient simulation of Gaussian fields at
high levels.

For more details on similar heuristics see the references of Footnotes 1 and
4, and also look at David Aldous’ superb book [10] on the Poisson clumping
heuristic .

5.2 Gaussian Related Random Fields

So far, these notes have concentrated almost exclusively on Gaussian random
fields. Despite the richness of the related theory, this is clearly not a class of
fields sufficiently wide to cover all applications. That is why, as early as Section
1.1 (cf. Figure 1.1.1) we defined the (real valued and typically non-Gaussian)
random fields

g(t) = F (f(t)) = F (f1(t), . . . , fk(t)), (5.2.1)

with f : M → Rk Gaussian, with independent, identically distributed com-
ponents, and F : Rk → R smooth. We shall call random fields of this type
Gaussian related. .

Choosing k = 1 and F (x) = x takes us back to the real valued Gaussian
case, but other simple choices take us to a wide range of interesting random
fields. For example, suppose that the fj are centred and of unit variance and
consider the following four choices for F , where in the third we set k = n+m.

k∑
i=1

x2
i ,

x1

√
k − 1

(
∑k
i=2 x

2
i )1/2

,
m
∑n
i=1 x

2
i

n
∑n+m
i=n+1 x

2
i

, min
1≤i≤k

xi.

The corresponding random fields are known as χ2 fields with k degrees of
freedom, Student’s T field with k − 1 degrees of freedom, the F field with n
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andm degrees of freedom, and the conjunction field. If you have any familiarity
with basic Statistics you will know that the corresponding distributions are
almost as fundamental to statistical theory as is the Gaussian distribution.

Actually, there is no reason to restrict ourselves to real valued Gaussian
related fields, for, given a set F1, . . . , Fd of nice functions on Rk we can,
analogously to (5.2.1), define a random field g : M → Rd by

g(t) = F (f(t)) =
(
F1

(
f1(t), . . . , fk(t)

)
, . . . , Fd

(
f1(t), . . . , fk(t)

))
. (5.2.2)

Up to regularity conditions, we can allow the Fi to be quite general, although
the fi are our usual i.i.d. regular Gaussian fields. Note that it is only a no-
tational issue to have different Fi depending on different fj ’s, should we so
desire.

Now suppose we want to know establish a version of the Gaussian kine-
matic formula for g. In particular, let D ⊂ Rd be nice. What can we say about
the mean value of the geometric characteristics of M ∩ g−1(D)? A lot, once
we note that

M ∩ g−1(D) = {t ∈M : g(t) ∈ D} = {t ∈M : f(t) ∈ F−1(D)}
= M ∩ f−1

(
F−1(D)

)
∆= M ∩ f−1(D′),

and so, as long as D and F were nice, so that D′ = F−1(D) is nice, we are
back in the setting of the Gaussian kinematic formula, despite the fact that
we started with only a Gaussian related random field. From this it follows
that

E
{
Li
(
M ∩ g−1(D)

)}
=

dimM−i∑
j=0

[
i+ j
j

]
(2π)−j/2Li+j(M)Mγ

j (D′). (5.2.3)

Thus, we have turned a problem about Gaussian related fields into one
about Gaussian fields. What is particularly useful, is that the non-Gaussian
nature of the problem has not impacted at all on the Lipschitz-Killing curva-
tures. That is, the Lipschitz-Killing curvatures appearing in (5.2.3) are those
related to the individual fj , and are unaffected by the non-Gaussian aspects of
the problem. Thus, for example, if the underlying fj are stationary, then the
Lipschitz-Killing curvatures are given by (4.5.2). In fact, any of the Lipschitz-
Killing curvature computations of Chapter 4 still hold.

All that remains is computing the Gaussian Minkowski functionals, and
we shall show you how to do this for one simple example. Further examples
can be found in RFG and ARFG. In all examples one needs to check that the
set D′ in (5.2.3) satisfies the necessary regularity conditions, but this is done
on a case by case basis.
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5.2.1 χ2 fields

The example that we shall look at is the real valued χ2 field, with k degrees
of freedom, and D = [u,∞), so that we are looking at simple excursion sets
of g. Thus, d = 1, F (x) = ‖x‖2, and D′ = {x ∈ Rk : ‖x‖2 ≥ u}.

Recall (3.5.5), which in the present case leads to

Mγ
j (D′) = (−1)k

dj

dxj
P {Zk ≥ x}

∣∣∣
x=
√
u
,

where Zk is distributed as the (positive) square root of a a χ2
k random variable,

and so has probability density

pk(x) =
1

Γ (k/2)2(k−2)/2
xk−1e−x

2/2.

Direct calculations, exploiting the basic property (2.2.7) of Hermite polyno-
mials, show that

dj−1pk(x)
dxj−1

=
1

Γ (k/2)2(k−2)/2

j−1∑
i=0

(
j − 1
i

)
(−1)i

dj−1−ixk−1

dxj−1−i Hi(x)e−x
2/2

=
e−x

2/2

Γ (k/2)2(k−2)/2

j−1∑
i=0

(
j − 1
i

)
(−1)i

dj−1−ixk−1

dxj−1−i Hi(x).

The summation can be rewritten as
j−1∑
i=0

1{k≥j−i}
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This immediately easily leads to the following expression for the Mγ
j (D′) for

j ≥ 1:

u(k−j)/2e−u/2

Γ (k/2)2(k−2)/2

b j−1
2 c∑
l=0

j−1−2l∑
m=0

(5.2.4)
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m!l!2l
um+l.
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When j = 0, Mγ
0(D′) is simply P

{
χ2
k ≥ u

}
.

Note that, having set up the general theory, all we needed to explicitly
compute the mean Lipschitz-Killing curvatures for χ2 random fields was some
calculus. For many other Gaussian related fields the same is true, although
the calculus may be a little more formidable. Nevertheless, it remains no more
than calculus.

Another important point to note is that if you believe in the general ap-
plicability of the Euler characteristic, then, since we now have an explicit
expression for the mean Euler characteristic of χ2 excursion sets, we also have
an approximation for χ2 exceedence probabilties.

In the following sections we shall see how to use these results in practice.

5.3 Brain Imaging

Most of the material in this section comes from a popular review [88] by
Keith Worsley which, although nowadays rather out of date, in terms of both
statistical methods and imaging technology, still makes for an excellent intro-
duction to topological inference in brain imaging. While the example is based
on analysing Positron Emission Tomography (PET) data, the same principles
hold for more sophisticated (e.g. fMRI) data.

A very recent review [56] by Friston and Kilner is an excellent place to
start looking for more up to date references and techniques. It also treats
the analysis of electroencephalographic (EEG) and magnetoencephalographic
(MEG) data, which, unlike PET data, also has a time component to it.

One of the earliest experiments in brain imaging was conducted in 1990 at
Montreal Neurological Institute (cf. [59]). In this experiment, subjects were
injected with a radio isotope emitting positrons, which annihilate with nearby
electrons to release gamma rays that are detected by PET. By careful recon-
struction, it was possible to build up an image of blood flow in the brain,
a measure of brain activity. This opened up the possibility of actually see-
ing which regions of the brain were activated by different stimuli, and so to
actually see the brain ‘thinking’.

In 1992, in one of the first experiments of its kind, (cf. [35]) subjects were
told to perform a linguistic task, involving the silent reading of words on a
screen, during the imaging process. By subtracting an image in which each
subject was ‘at rest’ looking at a blank screen, the experimenters were able
to see evidence of increased blood flow in certain brain regions corresponding
to the effort required for the task.

The images were, however, very blurred, and the signal (if any) was very
weak compared to the background noise, so to increase the signal-to-noise
ratio the experiment was repeated on 10 subjects. The brain images were
aligned in three dimensions, and the blood flow was averaged, leading to the
results of Figure 5.3.1.
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(a) (b) (c)

(d) (e) (f)

Fig. 5.3.1. A PET study showing regions of the brain activated by a reading task.

In Figure 5.3.1, the brain is rendered as a transparent solid with the rear
left side facing the viewer. The ventricles in the center form a single con-
nected hollow that gives the brain an Euler characteristic of 2. One of 80
slices through the brain is colour coded (red = high, purple = low) to show
(a) average blood flow of 10 subjects under the rest condition and (b) under
the task condition. The difference of the averaged blood flows, task – rest,
is shown in (c). Note that although these figures show a continuous image,
the raw data was actually stored as values at 128 × 128 × 80 = 1, 310, 720
voxels. At each such voxel there 10 pairs of blood-flow values, one pair for
each subject, one taken while the subject was performing the task, the other
at rest.

The statistical problem is to decide whether the task has any affect on brain
activity. To do this the standard deviation of the 10 differences (9 degrees of
freedom) was computed, and is shown in (d). The Z statistic for testing for
a significant increase in blood flow due to the task is (e), where at a voxel v
the Z statistic is given by

Z(v) =
task at v – rest at v

standard deviation at v
,

a ratio familiar to anyone who has taken even the most basic Statistics course.
We now have two tasks to perform:

(1) Decide whether or not performing the task has a (statistically) significant
effect on the brain.

(2) If we decide that there is an effect, can we identify the region of the brain
which is affected?
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One way to approach (1) would be to perform independent normal dif-
ference tests at each of the 1,310,720 voxels, a patently ridiculous procedure
since we would have no control over the familywise error rate5 (FWER). A
now standard approach6 to this problem is to assume that the random field Z
observed on voxels is a sampled version of smooth random field defined over
the brain, and that it fits into the theory of these notes.

The test statistic for the null hypothesis that there activation does not
affect blood flow is then

z
∆= sup

v∈Brain
Z(v).

The tail distribution of t can then be computed, using the formula for the mean
Euler characteristic and the Euler characteristic heuristic, and a rejection
threshold7 is determined.

Carrying out this procedure for the PET data gives a rejection threshold
of u = 4.22 at the 5% level, and the red region in (f) of Figure 5.3.1 shows
those regions of the brain with Z above this level. The fact that there are two
regions in the excursion set A4.22 here, giving an Euler characteristic of 2, is
highly significant, given that the expected Euler characteristic is only 0.05.
Of the two regions, the larger is in the left visual cortex and extrastriate,
which is associated with vision. The smaller one, in the left frontal lobe, is
near the language area of the brain. Thus the statistical testing is consistent
with known brain physiology.

Of course, there is much missing and worrisome in the above analysis,
but most of this has been fixed in the two decades since the above data were
originally analysed.

For a start, it is hard to accept that the Zv are normally distributed. After
all, they are based on a sample of size 10, which is somewhat too small to
appeal to the central limit theorem. However, it is reasonable to treat them as
T random variables, with 9 degrees of freedom. However, T random variables,
and T random fields, are Gaussian related, and so the arguments of the pre-
vious section, relying on the power of the Gaussian kinematic formula, enable
us to repeat the above argument treating Z as a T , rather than Gaussian,
random field. In this case there is no qualitative change in the results.
5 The familywise error rate of a collection of tests is the probability of making

one or more false discoveries, or type I errors, among all the hypotheses when
performing multiple pairwise tests.

6 To be fair we should point out that there is another approach to error control,
based on FDR (False Discovery Rate) techniques. We shall not describe this
approach here, but rather point you to [12, 66] which explain and support FDR.
We, of course, are partial to recent comparative studies [23, 24] which favour
the random field approach described above. However, we shall leave it to subject
matter specialists to fight over the details.

7 A rejection threshold for t at level α ∈ [0, 1] is the maximum level u for which
P{t ≥ u} ≥ α.
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A relatively minor issue here is the passage from data on a discrete set
of voxels to a continuous model. As we shall see, en passant, in Section 5.4
(cf. Figure 5.4.1) this is not too serious a problem given the rather fine lat-
tice on which the data are collected. However, it is an issue which requires
addressing8.

Another problem lies in the fact that in our theory we have always assumed
that the distributional parameters of our random fields were known, whereas
here they need to be estimated. Although we did not state so explicitly, i =n
the above analysis it was actually assumed that the field was isotropic9, so
there was only one parameter to estimate, the second spectral moment λ2.
There are standard ways for doing this in the brain imaging community, so
we shall not go into detail. However, it is important to note that once one is
prepared to make assumptions of smoothness and isotropy, there is only one
parameter that requires estimation.

Along the way one also needs to compute the Lipschitz-Killing curvatures
of the brain. This, however, is easy and only needs to be done once. Given
isotropy, the induced Riemannian metric on the brain is a scaled version of
the standard Euclidean one, and so the Lipschitz-Killing curvatures are pro-
portional to the brain’s volume (L3), surface area (2L2), caliper diameter10

( 1
2L1), and Euler characteristic (L0).

Were we not to have assumed isotropy, nor even stationarity, the situation
would have been much more complicated. In particular, we would have needed
to estimate the Lipschitz-Killing curvatures in all their topological glory. We
shall describe two ways to do this in the following section, along with two
other examples coming from brain imaging problems.

5.4 Estimating Lipschitz-Killing Curvatures

Lipschitz-Killing curvatures have had a prominent role to play in almost ev-
erything we have treated so far, mainly due to the central place they take in
the Gaussian kinematic formula. When we first met them in Section 1.2, we
saw that they were reasonably easy to compute for convex sets in Eulcidean
spaces, simply by using Steiner’s formula. In Section 3.4.2 we saw them de-
fined in far greater generality, over stratified Riemannian manifolds, and made
8 But not by us, and definitely not here.
9 Actually, when the data was analysed, there was little choice but to assume

isotropy, despite the fact the brain is definitely neither isotropic nor stationary.
At that time, there was no Gaussian kinematic formula to use with the necessary
milder assumptions.

10 The caliper diameter of a set is defined by placing it between two parallel planes
(or calipers), measuring the distance between the planes, and averaging over all
rotations of the set.
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no attempt to discuss examples where they could be computed. The reason
was that this is typically not easy to do11.

So what does a practicing statistician do, when there is a need to use the
Gaussian kinematic formula for, say, a thresholding problem as in the previous
section? There are essentially four practical approaches.

One approach relies on assuming that the Gaussian random fields under-
lying the problem are stationary and isotropic. In this case the Riemannian
metric they induce on the parameter space (cf. Section 4.5) is Euclidean,
and the Lipschitz-Killing curvatures Lk(M), as they appear in the Gaussian
kinematic formula, are given by

Lk(M) = λ
k/2
2 LEk (M),

where the LEk (M) are the Euclidean Lipschitz-Killing curvatures and λ2 is the
usual second spectral moment. Since the LEk (M) are generally computable
from Steiner’s formula (or Weyl’s tube formula, if M is not convex) the main
statistical problem reduces to estimating two parameters, λ2 and the variance
σ2 (which in the theory we typically assumed was equal to 1). Estimating two
parameters is not difficult, and there are various ways to do it. Typically, each
subject area of application has its own favourites.

Another possibility is to acknowledge the possibility of non-stationarity,
but to decide that if the application in mind is one of thresholding, it might
suffice to calculate approximate expected Euler characteristics of excursion
sets rather than precise ones. One way to do this is to take only the two
highest order terms (j = N = dimM and j = N − 1) in the sum (4.8.3),
which means that only LN (M) and LN−1(M) need to be computed.

It is not hard to show (cf. RFG for details) that, if M is a compact region
in RN , then

LN (M) = σ−N
∫
M

|detΛ(t)|1/2 dt, (5.4.1)

where Λ(t) is defined at (4.5.1).
It is also possible to derive a reasonable expression for LN−1(M), if M has

C2 boundary ∂M . This is given by

LN−1(M) =
1

2σ(N−1)

∫
∂M

|detΛ∂T (t)|1/2HN−1(dt), (5.4.2)

whereHN−1 is surface measure on ∂M . To define Λ∂T (t), let e1(t), . . . , eN−1(t)
be an orthonormal basisfor the tangent space to M at t ∈ ∂M . Then, in
analogy to (4.5.1), we define

11 There is a nice example in Section 4.6.2 of ARFG, which treats a case in which the
induced Riemannian metric arises from what is known as a ‘scale-space’ random
field. But even this is not an easy calculation.
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(Λ∂T (t))ij = Cov
(
∂f(t)
∂ei(t)

,
∂f(t)
∂ej(t)

)
.

There are situations in which these two top Lipschitz-Killing curvatures
are not too hard to compute, despite a lack of stationarity or isotropy.

The third and fourth approaches arise when there is either no assumption
of isotropy, or the parameter space is too complicated to make direct calcu-
lation of the LEk (M) analytically feasible. One of these takes a rather simple
minded, but effective, regression approach. Details can be found in [5]

In the spirit of Section 5.2 let f = F (g) be a Gaussian related random
field, with everything nice enough that we can rewrite a special case of (5.2.3)
as

E {ϕ (Au(f,M))} =
dimM∑
k=0

Lk(M) ρFk (u), (5.4.3)

for some (computable) functions ρFk .
Now suppose that our data consists of a number of repeated observations

f i, i = 1, . . . , n, of a random field f . We do not need to assume independence,
but we do assume that the f i have a common distribution. If, for a level u, a
corresponding collection of excursion sets is given by

Aiu = Au
(
f i,M

)
,

a natural estimate of E{ϕ(Au(f,M))} is given by the average

1
n

n∑
i=1

ϕ
(
Aiu
)
. (5.4.4)

Combining (5.4.3) and (5.4.4) yields the linear model

1
n

n∑
i=1

ϕ(Aiu) =
dim(M)∑
k=0

Lk(M)ρFk (u) + ε(u). (5.4.5)

Taking a sequence u`, ` = 1, . . . , L of levels, we can assume12 that the
ε(u`) have a mean zero, multivariate, normal distribution. The covariances
E{ε(ui)ε(uj)} are, of course, intractable.

Given (5.4.5), the Lk(M) can now be estimated via a generalized least
squares regression, where GLS is required since the errors are both het-
eroskedastic and correlated. Carrying this out in practice is neither too hard
nor trivial, and you can read about the details, which include optimal choice
of the levels u`, in [5]. We shall show you some results of the procedure in a
12 The assumption is justified either be appealing to a central limit theorem or the

need to assume something tractable. In any case, the actual calculations for the
model are L2, so a Gaussian assumption is not really crucial here.
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moment. However, even with the details, it is clear that a strong point of this
approach is that it avoids the need to estimate of the underlying covariance,
and actually does not even require a knowledge of what Lipschitz-Killing cur-
vatures actually are. Furthermore, the procedure is essentialy the same in any
dimension.

A third approach to estimating Lipschitz-Killing curvatures is due to Tay-
lor and Worsley [83] and is based on the idea of transforming non-stationary
fields to local isotropy. As already discussed in Section 2.6.2, this is typically
not possible. However, the Nash embedding theorem states that every Rie-
mannian manifold can be isometrically embedded into some Euclidean space,
where the meaning of isometric here is that the (Riemannian) geodesic dis-
tance between any two points in the original manifold is equal to the Euclidean
distance in the embedded manifold. Using this, and assuming that the n repli-
cations of a field f are observed on points ta, a = 1, . . . , A, in M , the ta are
mapped into S(Rn) with the mapping

ta −→
1

(
∑
i(f i(ta))2)1/2

(
f1(ta), . . . , fn(ta)

)
.

This creates a simplicial complex in Rn with A vertices, and it turns out
that the Euclidean Lipschitz-Killing curvatures of this complex lead to good
estimates of the Lipschitz-Killing curvatures that we require. Furthermore,
the Lipschitz-Killing curvatures of the complex can be computed from local
information on the sets of its vertices. The details are, again, neither too hard
nor trivial, and you can find them in [83]. The advantage of this approach
over the previous one seems to be that it attacks the Lj directly as geometric
objects, rather than as coefficients in a regression equation. The disadvantage
seems to be additional computation time, which one expects could become
significant as the dimension of the problem grows.

How different are the previous two methods? In practice, it seems that
although the approaches are very different, the results are similar. A simula-
tion study was carried out in [5], involving 10,000 replications of systems of
Gaussian random fields. The parameter spaces were squares, cubes, or two-
dimensional spheres. The fields were simulated on grids, ranging from very
coarse (5) to very fine (200). In the cube example, a ‘grid size’ of 100 means
that the data was taken at 100× 100× 100 points on a square lattice, which
is the order of magnitude of the number of lattice points in an fMRI brain
image. The covariance of the underlying random field was taken to match that
of an fMRI example.

As well as giving estimates of the Lipschitz-Killing curvatures, the sim-
ulation study also used the Euler characteristic heuristic to estimate 95%
threshold values, using the methods described in the previous section. Some
of the results are summarised in Figure 5.4.1. The plotted points in each box
show average estimates of the 95% threshold as a function of grid size, with
the smoothed curves based on logarithmic regression. The blue data is from



5.5 Cosmology 97

the Adler-Bartz-Kou approach, and the pink is from the Taylor-Worsley ap-
proach. Note that in the fMRI range (cubic with grid ≈ 100) the thresholds
are so close as to be visually indistinguishable. (In fact, the difference between
them is less than .005.)

Fig. 5.4.1. Estimates of 95% thresholds for random fields, using the methods de-
scribed in the text.

The vertical line at the top of the figure is the Euler characteristic heuris-
tic approximation to the threshold, given the true parameters of the model,
and is independent of the grid size. The lower, green curves are empirically
observed threshold levels. The fact that these are lower than all the others
is a consequence of the fact that the Euler characteristic heuristic approxi-
mation, whether it be based on known or estimated parameters, is related to
the distribution of the supremum of a continuous random field observed over
a continuous parameter space. The empirical thresholds, on the other hand,
come from data collected on a discrete lattice.

As must be obvious, there is much, much more that needs to be said here.
However, since our aim was merely to give you a flavour of brain imaging
applications, we shall stop at this point.

5.5 Cosmology

We shall now look briefly at another two applications of the Gaussian kine-
matic formula, this time in the area of cosmology rather than brain imaging.
The difference will lie not so much in the subject matter as in the way the
theory is applied. In the brain imaging example the application we described
centered on the Euler characteristic heuristic, which was related to high level
excursion sets. In the cosmology applications, excursion sets at all levels have
a role to play.
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We start with a some background, at the level of popular science.
In cosmology, the cosmic microwave background radiation (CMBR) is a

form of electromagnetic radiation filling the universe. CMBR is believed to
be radiation left over from an early stage in the development of the universe,
and its discovery is considered a landmark test of the Big Bang model of the
universe. When the universe was young it was smaller, hotter, and comprised
of a statistically uniform fog of hydrogen plasma. As the universe expanded,
both the plasma, and the radiation filling it, grew cooler. When the universe
cooled enough, stable atoms, which could no longer absorb thermal radiation,
began to form. The photons that were created during this cooling process have
been propagating ever since, though growing fainter and less energetic, and it
is these that are now measurable as CMBR. Its discovery in 1964 by American
radio astronomers Penzias and Wilson was the culmination of work initiated
in the 1940s, and earned them the 1978 Nobel prize. Its early measurement
and analysis in the 1980’s won Mather and Smoot another Nobel prize in
2006.

Figure 5.5.1, taken from [44], shows what CMBR data looks like, after
much preprocessing. This data is from the Wilkinson Microwave Anisotropy
Probe (WMAP), a satellite which measures the CMBR across the full sky.
The parameter space is a sphere, since the probe collects only directional
data. The preprocessing involved in generating a picture like Figure 5.5.1 is a
major task, but what is important for us is that, after the preprocessing, the
data are supposed to a realisation of a smooth, isotropic, Gaussian, random
field on the sphere. The smoothness is a consequence of smoothing procedures
in the preprocessing. The isotropy is a consequence of physical assumptions,
and the Gaussianess a consequence of central limit theoretic arguments also
at the Physics level.

Fig. 5.5.1. WMAP 3-year data for the celestial sphere. The average temperature
is plotted as white. Higher temperatures are redder and cooler ones are bluer. For
details see [44].

Cosmologists are interested in using WMAP and similar data for testing
the assumptions of Gaussianity and isotropy, and use the Gaussian kinematic
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formula to this end. The idea is simple: First compute the empirical Euler
characteristic curve, ϕ(Au), over a range of u of physical interest, usually over
a range of 6-7 standard deviations. Then estimate the parameters appearing in
the GKF and, treating these as if they were the true parameters, compute the
curve E{ϕ(Au)}. Alternatively, given the known general form of E{ϕ(Au)},
find the curve of this form that best fits the data. (This is closely related to
the first method we described in the previous section for estimated Lipschitz-
Killing curvatures.

One example is given in Figure 5.5.2, in which the data points come from
a particular frequency in the WMAP data, and the smooth curve is a best
fit. To the uneducated eye, it would seem that the fit is excellent. Cosmolo-
gists, however, believe that the slight overshoot at level ν = 1 is a significant
indication of a physically important non-Gaussian perturbative phenomenon,
and that studying it more than justifies the expenses involved in launching
new satellites with higher resolution sensors.

Fig. 5.5.2. Matching empirical Euler characteristics of excursion sets to a theoret-
ical Gaussian expectation. For details see Figure 4 of [44].

This type of analysis is common throughout cosmology, and, as well as
being used to compare data with theory, is also used to compare between
competing theories, compare theory and data with simulation, etc. Many of
these comparisons involve Gaussian vs. non-Gaussian assumptions, for which
cases the fact that the Gaussian kinematic formula also gives us an explicit
form for E{ϕ(Au)} in many non-Gaussian scenarios is particularly useful.

The analysis often also goes beyond the Euler characteristics of excursion
sets, looking also at their Lipschitz-Killing curvatures. For some applications
of this approach see, for example [65] and [72].

Another nice cosmological example comes from the statistical analysis of
galactic density models. Here the most recent data comes from the Sloan
Digital Sky Survey (SDSS) which is one of the most ambitious and influential
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surveys in the history of astronomy. A typical view of the data is given Figure
5.5.3, which shows the results of three galactic surveys, results of which were
published in 1986, 1994, and 2008. Each figure shows the excursion set Au,
where u is such that Au covers 50% of the galactic volume13. The differences
between the three surveys are primarily in terms of how large a slice of the
universe has been surveyed. The fact that there is always a slice in the middle
missing (the ‘galactic plane’ ) is a consequence of ‘local’ confounding effects
related to the positioning of our own galaxy.

Fig. 5.5.3. 50% high volume contours from three galactic surveys across three
decades. From left to right, they are Gott, Melott, & Dickinson (1986), [45], Vogeley
et. al. (1994), [85], and Gott, et. al. [46].

There are many competing theories of galactic structure, and many are
tested by studying ‘evolving universes’ through N -body simulations. Roughly,
what this means is that one starts at time zero with a N (recently of order
1010) particles, spread out in space according to some random mechanism, and
then allows them to move according to a physical model, often with a stochas-
tic component of its own. Gravitational forces in the model eventually bring
the particles together to form ‘galaxies’, and the resulting structure is then
smoothed to enable comparison with galactic survey data. Different distribu-
tions for the initial conditions and different physical models lead, naturally,
to different ‘final’ galactic structures, each of which is actually a realisation
13 For those of you have read that galaxies actually have a fractal structure, the

term ‘galactic density’ may sound a little strange. However, galactic density is
effectively a smoothed, ‘filtered’ version of the matter spread throughout the
visible universe. In terms of data, this is basically all that can be measured, and
so fractal theories need to be converted to smoothed versions to allow comparison
with data.
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of a smooth random field on a large subset of R3, nominally hundreds of
megaparsecs in diameter.

Distinguishing between these theories is done much as in the CMBR case,
except that now the random field is 3-dimensional. Nice, and quite typical,
examples are given in Figures 5.5.4 and 5.5.5.

Fig. 5.5.4. Genus curves for the SDSS data, a Gaussian model, and individual
simulations from three physical models.

Figure 5.5.4 shows five curves of the genus of excursion sets, genus being
used more commonly than the Euler characteristic in this area. (Recall that
the genus, G(A), of a 3-dimensional set A is given by G(A) = 1 − ϕ(A).)
The blue curve (the highest at the zero level) gives the empirical genus of the
excursion sets. The smooth curve gives the best Gaussian fit, and the other
three are the results of N -body simulations of different kinds. The simple
Gaussian actually seems to give a reasonable good fit to the SDSS data,
although one of the simulations, the ‘DH14 mock SDSS’, seems to do better.
The MR mock SDSS, while doing badly in the centre of the range, seems to
do well in the tails. However, it is hard to tell from single simulations how
good these fits are.

Figure 5.5.5, therefore, summarises the results of two larger scale simu-
lations, and includes some error bars. The conclusion here seems to be that
both the HD and MR models yield random fields of galactic density which,
at least from the point of view of their excursion geometry, are very close to
Gaussian in the centre of the distribution, but not in the tails. On the other
hand, they fit the SDSS data in the tails, but not at the centre. This, inter-
estingly, is the same region in which the CMBR data was not well s fitted
14 DH relates to ‘dark matter halo’ and mock to the fact that the simulations produce

fake, or mock, galaxies. MR refers to Millenium Run, an extremely large scale
simulation. cf. [76].
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Fig. 5.5.5. Genus curves with shaded error regions for the (a) 100 DH and (b) 50
MR samples, compared with SDSS and a Gaussian model.

by a Gaussian model, and thus the same issue of non-Gaussian perturbative
effects arise here.

Hopefully, this chapter gave you some ideas as to how the information
in the Gaussian kinematic formula can be exploited in applied scenarios. The
applications are much broader than we have presented, as well as being deeper
and more serious. Perhaps, one day, ARFG will be completed and you will
have somewhere to turn for more details. In the meantime, there are very rich
collections of papers out there which often make for fascinating reading.
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Algebraic Topology of Excursion Sets: A New
Challenge

So far, when looking at the topology of excursion sets, these notes have primar-
ily been concerned with differential topology. The main concepts which with
we worked – Morse theory, Lipschitz-Killing curvatures, Gaussian Minkowski
functionals – all come from this branch of topology.

Nevertheless, perhaps the most important of our tools, the Euler char-
acteristic, is as much a concept of algebraic topology as it is of differential
topology, and it is interesting to ask what might happen if we tried to push
further into this realm. While algebraic topology is an area not commonly
frequented by random fields researchers with a statistics or probability back-
ground, the aim of this brief chapter is to try to convince you that we have
been missing out on an important, rich, and potentially very useful class of
problems.

Algebraic topology is a branch of mathematics which uses tools from ab-
stract algebra to study topological spaces. One of the main reasons for working
in an algebraic world rather a geometric one is that while it becomes very hard,
if not impossible, to picture geometry in dimensions greater than three the
algebraic approach, at least in principle, works equally well in all dimensions.
Thus, one wonders if it can help in the study of random field geometry.

Fortunately, over the last few years there has been a very interesting and
rather exciting development in algebraic topology, as some of its practitioners
have begun looking out beyond the inner beauty of their subject and seeing
if they can apply it to problems in the ‘real world’. As a result, ‘applied
algebraic topology’ is no longer an oxymoron, and although it is true that at
this point sophisticated applications are still few and far between, there is a
growing feeling that the gap between theory and practice is closing. A very
lively discussion of this trend can be found in Rob Ghrist’s review [40], book in
progress [41] and website on a project on sensor topology for minimal planning
[42]. Gunnar Carlsson’s webpage [19], which describes a large Stanford TDA
(topological data analyis) project, and a DARPA webpage [25] describing a
broad based project, also help explain the reasons why so many people have
been so attracted to this direction.



104 6 Algebraic Topology of Excursion Sets: A New Challenge

The aim of this chapter is to describe some of the new ideas that have
arisen in applied algebraic topology and, in particular, to exploit some of
them in the setting of random fields. It is, to a large extent, taken from the
expository paper [7] where you can find more details and more examples.

6.1 Persistent homology and barcodes

In this section we are going to give a very brief and sketchy introduction to
some basic notions of algebraic topology. A concise, yet very clear introduction
to the topics that concern us can be found in [17, 41], while [48, 84] are good
examples of a thorough coverage of homology theory. Recent excellent and
quite different reviews by Carlsson [18, 21], Edelsbrunner and Harer [34],
and Ghrist [1, 26, 27, 40] give a broad exposition of the basics of persistent
homology.

Algebraic topology focuses on studying topology by assigning algebraic,
group theoretic, structures to topological spaces M . Thus, homology, coho-
mology and homotopy groups can be used to classify objects into classes of
‘similar shape’. We shall focus on homology. If M is of dimension N , then
it has N + 1 homology groups, each one of which is an abelian group. The
zero-th homology H0(M) is generated by elements that represent connected
components of M . For k ≥ 1 the k-th homology group Hk(M) is generated
by elements representing k-dimensional ‘loops’ in M . The rank of Hk(M),
denoted by βk, is called the k-th Betti number. For M compact and k ≥ 1,
βk, measures the number of k-dimensional holes in M , while β0 counts the
number of connected components. It is a deep result, which we already met at
(1.2.15), that our old friend the Euler characteristic is given by the alternating
sum

ϕ(M) =
N∑
k=0

(−1)kβk(M). (6.1.1)

To explain the idea of persistent homology, we shall work in the the setting
of the so-called ‘Morse filtration’ of excursion sets.

6.1.1 Barcodes of excursion sets

Suppose that M is a nice space, that f : M → R is smooth, and consider the
usual excursion sets Au = {t ∈ M : f(t) ∈ [u,∞)}. Note that if u ≥ v then
Au ⊆ Av. Going from u to v, components of Au may merge and new com-
ponents may be born, and possibly later merge with one another or with the
components of Au. Similarly, the topology of these components may change,
as holes and other structures form and disappear. Following the topology of
these sets, as a function of u, by following their homology, is an example of
persistent homology. The term ‘persistence’ comes from the fact that as the
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level u changes there is no change in homology until reaching a level u which
is a critical point of f ; i.e. the topology of the excursion sets remains static,
or ‘persists’, between the heights of critical points. This basic observation is
actually at the core of Morse theory1. However, the persistence of persistent
homology goes further. For example, when two components merge, one treats
the first of these to have appeared as if it is continuing its existence beyond
point at which the merger occurs.

A useful way to describe persistent homology is via the notion of barcodes.
Assuming that both f and M are smooth enough, then, if Au is non-empty,
dim(Au) will typically be N = dim(M). A barcode for the excursion sets of f
is then a collection of N+1 graphs, one for each collection of homology groups
of common order. A bar in the k-th graph, starting at u1 and ending at u2

(u1 ≥ u2) indicates the existence of a generator of Hk(Au) that first appeared
at level u1 and disappeared at level u2. An example is given in Figure 6.1.1,
in which the function f is actually the realisation of a smooth random field on
the unit square. The top seven boxes show there the surfaces generated by a
2-dimensional random field above excursion sets Au for different levels u. To
determine the level for each figure, follow the vertical line down to the scale
at the bottom of the barcode. As the vertical lines pass through the boxes
labelled H0 and H1, the number of intersections with bars in the H0 (H1)
box gives the number of connected components (resp. holes) in Au. Thus, at
u ∼ 1.9, Au has 4 connected components but no holes, while at u ∼ −1.2, Au
has only 1 connected component, but 9 holes. The horizontal lengths of the
bars indicate how long the different topological structures (generators of the
homology groups) persist.

Figure 6.1.2 is even more impressive, since it shows a three dimensional
example. The barcode diagram is to be read as for Figure 6.1.1, with two
differences: The top 7 boxes now display the excursion sets themselves and
the values of the field are colour coded. Furthermore, there are now three
homology-groups/barcode-boxes, representing connected components, han-
dles, and holes.

Note that, as opposed to the 2-dimensional case, it is almost impossible to
say anything about topology just by looking at the boxes with the excursion
sets at the top of the figure, but there is a lot of immediate visual information
available in the barcodes. This phenomenon becomes even more marked as the
dimension N of the parameter space increases. While it may be impossible to
imagine what a five dimensional excursion set looks like, it is easy to look at
a barcode with six sets of bars for the six persistent homologies.
1 In fact, the results of Section 3.8, which linked Euler characteristics of excursion

sets to indices of critical points is a consequence of this observation, homology
theory, and (6.1.1).
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Fig. 6.1.1. Barcodes for the excursion sets of a function on [0, 1]2. Computation of
the barcodes was carried out in Matlab using Plex (Persistent Homology Computa-
tions) from Stanford [20]. Note the unusual left to right ordering of the horizontal
axis, with high levels on the right rather than the left.

Fig. 6.1.2. Barcodes for the excursion sets of a 3-dimensional random field.
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6.2 Barcode distributions

A fascinating and challenging open area is determining distributional proper-
ties of bar codes. Note that one should treat the entire collection of bar codes
generated by a random field as a single random variable, albeit taking values
in a rather complicated space, viz. the space of barcodes. What can be said
about the distribution of these barcodes? Where does one even start working
on such a problem?

As usual, one starts with simulations. In particular, with 10,000 simula-
tions of the random fields from which Figures 6.1.1 and 6.1.2 were generated,
giving two collections of 10,000 barcodes. In order to represent the barcode
data in a reasonable fashion, it is convenient to employ persistence diagrams
rather than barcodes. To form a persistence diagram from the bars in Hk, one
simply replaces each bar by a pair (x, y), where x is the level at which the bar
begins and y the level at which it ends. Thus x > y and the pair (x, y) lies in
a half plane. In Figure 6.2.1 the corresponding persistence diagrams for the
complete simulation data are shown for H0 and H1.

Fig. 6.2.1. Persistence diagrams for 10,000 simulations of an isotropic random field
on the unit square. Note that the diagrams for H0 and H1 seem quite different.

Additional information on the barcodes is given in Figure 6.2.2. What is
shown there are the (marginal) distributions of the start and end points of
the barcodes for H0 and H1 from the same simulation. A simple application
of Morse theory, or, in this simple two dimensional setting, a little thought,
leads to the realisation that the start points of the H0 bars are all heights
of local maxima of the field, while the end points of the H1 bars correspond
to local minima. These distributions have been well studied (although their
precise form is not known) in the general theory of Gaussian random fields.
The remaining start and end points correspond to different types of saddle
points of the random field. However, what differentiates between the end point
of a H0 bar and the start point of a H1 bar is global geometry and is not
determined by the local behaviour of the field.
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Fig. 6.2.2. Empirical distributions of start and end points of bars for the Gaussian
field of Figure 6.2.1.

It would be interesting to know more about the real distributions under-
lying Figures 6.2.1 and 6.2.2, but at this point we know very little.

There is, however, one thing that we do know.

6.3 The Mean Euler Characteristic of the Barcodes of
Gaussian Excursion Sets

We conclude these notes with the one existing theorem about Gaussian ex-
cursion set barcodes, for which we need a little notation, and a slight change
of view. The latter is that instead of looking at excursion sets above levels,
we shall look at excursions below levels, or sub-level sets rather than super-
level sets. The difference is one of convention only, and will make it easier
to compare the results of this section with the paper [14] from whence they
came.

We denote a barcode diagram corresponding to the excursion setsA(−∞,u](f,M),
u ∈ R, by B = B(f). Similarly, we denote a barcode diagram corresponding
to the excursion sets A(−∞,u](f,M), u ≤ a, by Ba = B(f, a). We denote the
individual bars in B (or Ba) by b, their lengths by `b, and the degree of the
homology group to which belongs the generator that they represent by µ(b).
By B(f, a)

We then define the Euler characteristic of a barcode B (or Ba), after re-
moving any bars of infinite length, to be
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χ(B) ∆=
∑
b∈B

(−1)µ(b)`(b).

The theorem is

Theorem 6.3.1 As in the Gaussian kinematic formula, Theorem 4.8.1, M ⊂
RN be a regular stratified manifold. Let f = (f1, . . . , fk) : M → Rk be a vector
valued random process, the components of which are independent, identically
distributed, real valued, Gaussian processes, regular in the sense of Condition
4.5.2, and with zero mean and constant unit variance. Assume that F : Rk →
R is C2 and set g = F ◦ f . Then

E {χ(B(g, gmax))} = ϕ(M) (E {gmax} − E{g})

+
N∑
j=1

(2π)−j/2Lj(M)
∫

R
Mj(Du)du,

where Du = F−1((−∞, u]), gmax
∆= supt∈M g(t), and E{g} ∆= E{g(t)} for any

t ∈M .
If f is real, then

E{χ(B(f, a))} = ϕ(M) (φ(a) + aΦ(a)) + φ(a)
N∑
j=1

(2π)−j/2Lj(M)Hj−2(−a),

for any a. As usual, the Lj, j = 0, . . . , N are the Lipschitz-Killing measures of
M with respect to the metric induced by the fi, and the Mγ

j are the Gaussian
Minkowski functionals on Rk. The functions φ and Φ are, respectively, the
density and distribution functions of a standard Gaussian random variable.

Clearly, the content proof of Theorem 6.3.1 must somehow be related to
the Gaussian kinematic formula, since it uses its conditions, and the form of
the result is similar. For details, you will have to read [14], where you will also
find a lot of other fascinating material. This includes an explanation of what
is behind the result, and why it might be useful in applications.

One of our colleagues recently stated: “I can think of no two topics in
mathematics further away from one another than probability and algebraic
topology. There is probably no way to connect them.”

Yet here, in Theorem 6.3.1, is an elegant connection, one of the first of its
kind. Thus it is a tantalising way to end these notes, pointing, as it does, to
an entire new class of problems and so the future, rather than the past.
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