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TOPOS, and why you should care about it
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Robert Adler writes in the first of a new series of columns:
To pure mathematicians, a topos is a type 
of category that behaves like the category 
of sheaves on a topological space. (I’ll bet 
that this definition didn’t help many IMS 
members very much. It certainly doesn’t ‘do 
it’ for me!) To literary buffs, topos describes 
a traditional theme or motif, or a literary 
convention. In both cases, the source is the 

Greek τοποζ, meaning ‘place’ although in the literary setting the term 
comes from κοινοζ τοποζ, literally, ‘common place’. In Hebrew, the 
root is , related to climbing or ascension.

However, in this and three more columns to come, TOPOS is sim-
ply an acronym for Topology, Probability and Statistics, and the aim 
of the columns will be to convince you that by exploiting the theme 
of TOPOS we are going to be able to ascend to a place where three 
disciplines are today combining to produce elegant mathematics, 
powerful statistical tools, and challenges galore.

For some motivational background, let’s go back to the 1970s 
when a topologist by the name of John Tukey (yes! He was trained 
as a topologist, not as a statistician) introduced and fought for a 
statistical methodology he called EDA (Exploratory Data Analysis). 
In Tukey’s own words, a short description of EDA is that 

1. It is an attitude and
2. A flexibility and
3. Some graph paper (or transparencies, or both).
Although it seems hard to believe today, I am old enough to 

remember that EDA involved a serious challenge to the dominant 
statistical paradigms of the time, which were based almost solely 
on hypothesis testing and parameter estimation. The idea that one 
should play with data first seemed outlandish. Times have changed, 
and today EDA is not only an established practice, but, backed up by 
some very nice probability, it enjoys a solid scientific foundation and 
has provided grist to the mills of theoreticians of many kinds.

Times continue to change, and while Tukey’s ‘attitude’ and 
‘flexibility’ are as relevant today as they ever were, graph paper is hard 
to find, and transparencies have long since yielded to online presenta-
tions. Moreso, even if we had them on our desks, they would be next 
to useless for EDA-ing the large data sets that are so common today. 
What is arising as an EDA-like tool, however, is something known as 
TDA: Topological Data Analysis. Perhaps not surprisingly, given the 
precedent set by Tukey, TDA comes out of the world of topologists 
rather than the classical analysers of data, statisticians

The appearance of topology—and especially algebraic topol-
ogy—as a tool for understanding real world problems is actually not 

surprising. With data arriving in greater and greater numbers and, 
in particular, in higher and higher dimensions, we need number 
crunchers for the numbers and understanding for the dimensions. The 
people who have invested most effort over the last half century or so 
thinking about the structure of high-dimensional objects are algebraic 
topologists, and some of the braver ones have been stepping outside 
their homological ivory towers at the peak of pure mathematics to 
turn their insight and the powerful tools they have developed to 
non-mathematical uses. 

Indeed, there has been such a significant expansion of activity in 
applying algebraic topology that the term Applied Algebraic Topology 
is no longer the oxymoron that it would have been a decade ago. 
Real applications of the techniques of algebraic topology are already 
appearing (in part, thanks to the enormous success of the programs 
Topological Data Analysis and Sensor Topology of Minimalist Planning 
[SToMP] funded by the US Defense Advanced Research Projects 
Agency (DARPA) as well as similar, but smaller, European programs). 

Many of the applications in TDA are of the dimension reduction 
and manifold learning type. These 
problems are far from new, and 
both statistics and computer 
science are awash with 
algorithms for doing this 
well and efficiently. Many 
of these, such as projection 
pursuit and principal 
component analysis, have 
lead to deep mathematical 
problems demanding serious 
statistical and probabilistic 
analyses, so IMS members have 
had a lot to do here. However, 
TDA adds a very novel approach 
to these problems. While statisticians 
and their friends typically like to find 
estimated subspaces and manifolds that 
are close to the truth in some standard, 
quantifiable distance, the proponents of 
TDA look for ways to construct estimates 
that have the right topology. An underlying 
theme is to get the qualitative topology—
does the data live on a sphere, or torus, or 
maybe Klein bottle (and yes, there is data that 
lives on a Klein bottle, but that is for a later col-
umn)—right before starting quantitative analysis. Indeed, this is very 
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Robert Adler likes this figure, in which the barcodes at the bottom are “brilliant EDA/TDA 
descriptors of the three-dimensional structures at the top”. He will be writing more about 
this in his next columns.

close to Tukey’s plan for EDA, but today’s TDA can call on tools of 
computational topology that were mere pipe dreams in Tukey’s day.

In cosmology and astrostatistics, the ideas of TDA have been 
used for both quantifying the structures behind galactic density data, 
and for smoothing the data itself. As in manifold learning, the ideas 
behind TDA-based data smoothing are quite different to the usual 
ones. Instead of aiming at minimising some quantifiable measure of 
smoothness such as the Lp norm of a gradient, the aim now becomes 
to free the data of ‘spurious, 
low level, topology’, whatever 
this might mean. 

I plan to devote three 
more columns to TOPOS, 
developing most of the above 
thoughts as well as explaining 
unfamiliar terms and concepts. 
En passant, I will write about 
my currently favourite figure 
(right) in which the barcodes 
at the bottom are brilliant 
EDA/TDA descriptors of the 
three dimensional structures at 
the top. 

One column will be 
devoted to each of the topol-
ogy, probability, and statistics 
involved in TDA. 

Today, however, let me 
conclude by telling you a story, which might help explain why I think 
statisticians and probabilists should care about TDA.

In 2010 I went to my first Applied Topology workshop. I think 
I was invited because of work I had done on topology and random 
fields, but I—like many of you might have been—was very much a 
statistical–probabilistic fish out of water, gasping in the air of topol-
ogy, full of terms and ideas that had me floundering. I had a problem. 
But I am a reasonably quick learner, and it turns out that understand-
ing the basics of algebraic topology—as opposed to breaking new 
ground in the area—is not all that hard (a point I want to bring home 
in the next column). So it was not that long until I realized that much 
of the problem was due not solely to my ignorance, but rather to a 
community of mathematicians who, to my disbelief, were analyzing 
data with powerful mathematical tools but with absolutely no use of 
modern, or even classical statistical methodology to help them. To 
make matters worse, very few of the speakers had absorbed the most 
basic statistical concepts that data is often based on a random sample 

from a larger population, or contains measurement or other errors, 
so that intrinsic stochastic elements in what they are analyzing could 
have a major impact on their results.

Although this was less than four years ago, times are a’changing, 
and a recent IMA workshop on TDA (apparently the best-attended 
workshop in the IMA’s history!) was preceded by a three day tutorial 
on probability and statistics for topologists. In addition, SAMSI has 
just run a workshop on TDA as part of its 2013–14 program on 

Low-dimensional Structure in 
High Dimensional Systems, so not 
only is the word getting out to 
applied topologists that they need 
to think stochastically, the word 
is reaching statisticians that there 
is a new application out there that 
both needs their contribution 
and is also likely to provide them 
with new tools that might be the 
twenty-first century version of 
EDA. 

Topologists and 
probabilists have also met at 
an AIM (American Institute of 
Mathematics) workshop.

So TOPOS is starting to 
grow. There is no question that 
the T needs P and S, but there is 
also no question that the T has 

tools for the S, and both have lots of beautiful problems for the P’s 
like me. 

More next time. For those who do not want to wait, or who want 
something more serious than two-page machinations, here are three 
useful sources that will also direct you further.
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2010.
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