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A word of introduction: This ‘Supplementary Information’ began its life as a collection
of a handful of tables containing additional details for the results in the body of the main
paper, as well as some explanations for which there was not space there. It was primarily
motivated as a response to a number of questions raised by two excellent referees of the
first version of the paper.

As time went by, the document took on a life of its own, so that it is now more or less a
paper in its own right. (Although it cannot be read without first reading the main paper,
so you should read that first.) On the one hand, we apologize for its length. On the other
hand, it contains a lot of useful information – and challenges – that seem to be important
for the current and future development of RST.

So perhaps its detail and length are justified.

SI 1. Homology and persistent homology
In this section we give a few pointers to the literature on both persistent homology, as
the central tool of applied topology, as well as to the more recent literature looking at
persistence diagrams from a statistical viewpoint. We make no attempt to give a complete,
or even comprehensive, review, since there are already a number of excellent papers doing
this. Rather, we shall give the briefest of overviews and then point the reader to the
relevant papers.

One reference that is extremely relevant is a recently published, comprehensive and
up to date review [43] (30 pages, and close to 100 references) by Larry Wasserman, on
topological data analysis from the viewpoint of statistics. (See also [40] which also considers
a number of interesting hypothesis testing issues for persistence diagrams.) Given the
existence of Wasserman’s review, it seems superfluous for us to attempt to cover the same
material here, and so we shall often refer the reader to [43] for background rather than
repeat what has already been written there.

Nevertheless, it is probably still worthwhile to give the briefest of introductions to some
of the basic notions of algebraic topology and persistence, as a lead-in to the statistical
analysis of persistence diagrams that we have proposed. It will also help set up notation
and language for what we want to do.

SI 1.1. Homology
While the classic book by Hatcher [24] is one of the best places to start learning about
homology theory, more recent excellent and quite different books and reviews by Carlsson
[8, 9], Edelsbrunner and Harer [15, 16, 17], Zomorodian [44], Oudot [31] and Ghrist [21]
all give broad expositions of homology and are much closer to the spirit of our own work.
More importantly, they also treat the much newer subject of persistent homology, which
is not to be found in the classic texts. (For a description of the history of persistence, see
the Introduction to [16].)

Algebraic topology focuses on studying topology by assigning algebraic, group theoretic,
structures to topological spaces X . Thus, homology, cohomology and homotopy groups can
be used to classify objects into classes of ‘similar shape’. We focus on homology. If X is of
dimension N , then it has N + 1 homology groups, each one of which is an abelian group.
(Throughout, we take the coefficients from Z2, thereby making the groups into vector
spaces.) The zero-th homology H0(X ) is generated by elements that represent connected
components of X . For k ≥ 1 the k-th homology group Hk(X ) is generated by elements
representing k-dimensional ‘loops’ in X . (Roughly speaking, a k-dimensional loop is a
k-dimensional boundary of a (k + 1)-dimensional set.) The rank of Hk(X ), denoted by
βk, is called the k-th Betti number. For X compact and k ≥ 1, one can think of βk
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as counting the number of ‘(k + 1)-dimensional holes in X ’, while β0 counts the number
of connected components. The Euler characteristic, a central topological quantity and
homotopy invariant, is then

χ(X) =

N∑
k=0

(−1)kβk. (1)

SI 1.2. Persistent homology
The notion of persistent homology arises when one has a filtration of spaces; viz. a sequence
(or continuum) of spaces X1 ⊆ X2 ⊂ . . . (or Xt, with Xs ⊆ Xt whenever s ≤ t) and one
is interested in how homology changes as one moves along the sequence. The references
above give full - and quite non-trivial - technical definitions of how this is done, but we shall
suffice with an example that is all that is needed for this paper, and which also introduces
Gaussian random fields. The example comes from an earlier paper, [2].

Suppose that X is a nice space, that f : X → R is smooth, and consider the filtration
of excursion, or super-level, sets

Xu
∆
= {x ∈ X : f(x) ∈ [u,∞)} ≡ f−1([u,∞)). (2)

Note that if u ≥ v then Xu ⊆ Xv. Descending from u to v, components of Xu may merge,
new components may be born, and may possibly later merge with one another or with
the components of Xu. (When two components merge, the first of these to have appeared
is treated as if it is the one continuing its existence beyond the merge level.) Similarly,
the topology of these components may change, as holes and other structures form and
disappear. Following the topology of these sets, as a function of u, by following their
homology, is an example of persistent homology. The term ‘persistence’ comes from the
fact that as the level u changes there is no change in homology until reaching a level u which
is a critical point of f ; i.e. the topology of the excursion sets remains static, or ‘persists’,
between the heights of critical points. This, of course, is the basic observation of Morse
theory, which links critical points to homology. However, the persistence of persistent
homology goes further than regular Morse theory.

A useful way to describe persistent homology is via the notion of barcodes. Assuming
that dim(X ) = N , we also have, from the smoothness of f , that, if Xu is non-empty, then
dim(Xu) will typically also be N . A barcode for the excursion sets of f is then a collection
of N + 1 diagrams, one for each collection of homology groups of common order. A bar
in the k-th graph, starting at u1 and ending at u2 (u1 ≥ u2) indicates the existence of a
generator of Hk(Xu) that appeared at level u1 and disappeared at level u2. An example is
given in Figure S1, in which the function f is actually the realisation of a smooth, Gaussian
random field (function) on the unit square (on the left) or on the unit cube (on the right).
This is an example to which we shall return later when treating CMB data.

Figure S2 shows a different representation of the barcodes for the 2-dimensional example
of Figure S1. Each bar has a ‘birth time’ b and ‘death time’ d, where d < b since,
as described above, the filtration is for upper level sets, and we index these by levels
descending from +∞. The points (d, b) corresponding to these bars appear in Figure S2,
with the H0 bars in the left hand diagram and the H1 bars on the right. These diagrams,
or, rather, the collection of points in them, are the persistence diagrams at the core of this
paper.

To get a feeling for the overall distribution of persistence diagrams, Figure S3 shows
the points from 1,000 persistence diagrams of the kind used to generate Figure S2. Note
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(a) (b)

Figure S1: (a) Barcodes for the excursion sets of a Gaussian random field on [0, 1]2. The top seven boxes
show the surfaces generated by a 2-dimensional random field above excursion sets Xu for different levels
u. To determine the level for each figure, follow the vertical line down to the scale at the bottom of the
barcode. As the vertical lines pass through the boxes labelled H0 and H1, the number of intersections with
bars in the H0 (H1) box gives the number of connected components (resp. holes) in Au. Thus, at u ∼ 1.9,
Xu has 4 connected components but no holes, while at u ∼ −1.2, Xu has only 1 connected component, but 9
holes. The horizontal lengths of the bars indicate how long the different topological structures (generators
of the homology groups) persist.
(b) Barcodes for the excursion sets of Gaussian random field on [0, 1]3. The barcode diagram is to be read
as for (a) with two differences: The top 7 boxes now display the excursion sets themselves and the values of
the field are colour coded. Furthermore, there are now three homology-groups/barcode-boxes, representing
connected components, handles, and holes.
Computation of the barcodes, in both cases, was carried out in Matlab using Plex (Persistent Homology
Computations) from Stanford [10].

that some care needs to be taken in interpreting this figure, since it is not a scatterplot
of persistence diagrams. Each of the 1,000 persistence diagrams is a collection of points,
and so should be thought of as a single point in (R2)N , where N is the largest number of
points in any of the diagrams. However, since visualizing this is impossible, plotting all the
points of the individual persistence diagrams in one two-dimensional plot still has value.
In particular, two facts are immediately obvious from Figure S3, that cannot be seen in
the individual persistence diagrams of Figure S2. One is that H0 and H1 ‘distributions’
are almost reflections of one another. This is a consequence of the fact that the underlying
Gaussian functions are statistically symmetrical about zero, as well as the simple relation-
ship between upper and lower level sets in two dimensions. The other is the fact that each
‘distribution’ is, itself, asymmetric. This will be an important fact to remember when we
turn to the Gibbs’ modeling below.
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(a) (b)

Figure S2: Persistence diagrams corresponding to the 2-dimensional barcode diagram of Figure S1a. (a)
The H0 homology diagram (the upper set of bars in Figure S1a). (b) The H1 homology diagram (the lower
bars).

(a) (b)

Figure S3: Superpositioning of the points from 1,000 (random) persistence diagrams of the kind shown
in Figure S2. (a) H0 points (b) H1 points.

SI 1.3. Analysis of persistence diagrams: Current methodology
Persistence diagrams almost always arise as topological summaries of some underlying
phenomenon, and, having been constructed, are typically subject to some kind of analysis.
This can be thought of as a path

phenomenon → persistence diagram → analysis. (3)

The analysis can be of various forms. As have already noted, Wasserman’s review [43]
gives an excellent review of many of the statistical approaches to the analysis of persistence
diagrams, making it rather superfluous for us to attempt a literature review here. There are
also other approaches, many of which involve summarizing the diagram with either a low
dimensional vector of numerical descriptors (typically involving various measures associated
with metric measurements, bottleneck, Wasserstein, or other), a large dimensional vector
(but of significantly lower dimension than the number of points in the diagram), or real
valued function (e.g. the persistence landscape of [7], the persistence intensity functions
of [13, 18], the persistence weighted Gaussian kernel approach of [27, 37, 39], and the
persistence images of [1]). Many of these approaches (see also [26]) adopt techniques such
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as principal component analysis and support vector machines to analyse this summary
data.

What is common to all approaches, however, is the need for multiple instances of
the persistence diagram. When the analysis is essentially statistical, these are needed to
compute means, averages, and so forth, as well as to justify the application of tools such as
the central limit theorem. In the machine learning setting, multiple instances are required
for the learning phase of the associated algorithms.

Providing multiple instances of the persistence diagram is not a trivial task. In some
scenarios, multiple observations of the ‘phenomenon’ of (3) may be available. More typ-
ically, however, only one observation of the phenomenon is available, and so only one
diagram. In those cases, the standard approach to effectively increase the number of in-
stances is via resampling, either of the phenomenon or the diagram. Virtually all of the
papers referred to above all have examples of this approach.

The contribution of the present paper is to enter the diagram (3) at the intermediate
step, by providing a new approach to providing multiple instances of a persistence diagram
when, perhaps, only one such original diagram is available. We do this via probabilistic
modeling of persistence diagrams.

SI 2. Probability models for persistence diagrams

The first point that needs to be made is that virtually nothing is known about the dis-
tribution of persistence diagrams for specific problems. On the one hand, the fundamental
probability theory of persistence diagrams has been laid down in papers like [29, 30, 42].
These results establish that the space of persistence diagrams has properties that allow for
the definition of probability measures which support expectations, variances, percentiles
and conditional probabilities, and that the space is complete and separable when equipped
with the Wasserstein metric. Despite the existence of this general theory, very few explicit
models have been suggested which would assign explicit probabilities to a given, observed,
persistence diagram. Indeed, even when given a simple model for the data underlying a
persistence diagram (such as a filtration of Čech complexes defined over the points of a
Poisson process) one is hard put to say much non-asymptotic about expectations, let alone
distributions. (See, for example, the reviews [6, 25].)

The second point, which is a consequence of the first and already noted above, is that
the lack of parametric models has meant that virtually all previous statistical analysis of
persistence diagrams has relied on some sort of resampling. To replace this, we suggest
a very specific, parametric, model for persistence diagrams. Thus, once the parameters
are estimated – and this is possible from a single diagram, assuming that it is sufficiently
rich in points – it is then possible to generate simulated diagrams from the hypothesised
distribution to be used in statistical analysis.

SI 2.1 Intensity functions and Poisson processes
Before turning to the Gibbs measures that we propose as a basis for RST, we want to discuss
a seemingly much simpler, and quite natural approach (which was also, not surprisingly,
raised by a referee).

Although persistence diagrams are collections of points, it is natural to smooth them
with an appropriate kernel, and so obtain what [13, 18] refer to as ‘persistence intensity
functions’. One can then base statistical analysis of the diagram on statistical analysis of
the intensity function, using any of a wide class of nonparametric statistical techniques for
analyzing functional data, as, for example, in [13].
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However, from our point of view, empirical persistence intensity functions could also
be treated as if they were the estimated intensity of a non-homogeneous point process,
such as a Poisson process, which could then be simulated in much the same spirit as
described for the Hamiltonian model described in the paper, although the precise details
would be different. (Nevertheless, some sort of MCMC approach would probably be the
most appropriate.)

An important advantage of this model, over the one we have proposed, would be that it
would be easier to allow, in the simulations, for changing numbers of points in the diagrams,
allowing points near the diagonal to appear or disappear. This is actually a crucial aspect
of the mathematical models of persistence diagrams developed in [29, 30, 42].

In our analysis we have kept N fixed, for a number of reasons. The first is that allowing
N to vary in the Gibbs model requires additional modeling, and that one needs a good
model for the distribution of N , effectively external to the Gibbs setting. (In the Poisson
setting, whether homogeneous or not, N would have a Possion distribution with parameter
determined by the integral of the intensity measure.) We do not, at this point, have such
a model.

The second reason is that modeling N requires adding at least one additional dimension
to the parameter space, and, at least for diagrams with a large number of points, we were
already near the limits of available computing capacity with the five parameters over which
we optimized models.

Both of these reasons are, obviously, choices of convenience. However, the main reason
why we were content to keep N fixed, and why we felt it was not a serious restriction,
was that we applied (and recommend) RST primarily in situations in which N is large.
In these situations it is unreasonable to expect that small fluctuations in the numbers of
points (particularly those in the neighborhood of the diagonal, which is where new points
are ‘born’ and old ones ’die’) would have more than a minor impact on the results.

In addition, we feel that there is a potential drawback of using intensity functions as a
basis for generating (even non-homogeneous) Poisson processes as models for persistence
diagrams, in that the Poisson process assumes the independence of numbers of points in
disjoint regions, even if they are neighboring regions. This does not seem a reasonable
assumption for persistence diagrams. Indeed, the strong significance of the interaction
parameters that we found in the two examples treated in the paper indicate that such
independence is unreasonable, and that there is, in fact, a tendency towards repulsion
between the nearby points in persistence diagrams. Leaving the Poisson setting, but re-
maining in the setting of point processes in general, typically eventually leads to Gibbs
measures, or similarly complicated models.

Another potential drawback is the essentially nonparametric nature of the intensity
function, which makes it non-trivial to carry out parametric hypothesis testing of the
kind we did for the CMB example. Of course, in the framework of nonparametric, and
particularly Bayesian, statistics, this particular drawback might be considered a strength.

Nevertheless, alternative, non-homogeneous point processes based on persistence inten-
sity functions present a serious alternative to the Hamiltonian models treated in this paper,
and deserving of a more detailed study.

SI 2.2 Gibbs measures
As described in the main paper, our choice of Gibbs measures to model the points of
persistence diagrams was based on their long history as high quality parametric models, a
rich literature on both their theory and application, and the ease with which they lead to
simulations via Markov chain Monte Carlo.
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In this section we want to address three main questions (along with a few lesser ones,
en passant):

1. When fitting a Gibbs model to data, are the estimation techniques we suggested
reliable?

2. When simulating from the fitted model, do the simulations reliably replicate the
statistical properties of the persistence diagrams?

3. How long should the simulation be run, so as, on the one hand, to provide data
consistent with the original persistence diagram while, on the other hand, providing
(almost) independent replications of it?

Since we have no useful information on the true distributions of persistence diagrams, it is
impossible to provide precise, theoretically justifiable, answers to either of these questions.
Thus we will answer them with (typical) examples.

The first example that we shall consider comes from Gaussian random fields on the 2-
sphere. We simulated 100 such fields, and, in preparation for the CMB example we study
in the paper, used the simulation routines of NASA’s HEALPix software1. The precise
details of the simulation are not that important for our current purposes, and it suffices to
note that they give 100 independent replications of Gaussian random fields, at 120 arcmin
smoothings, that look like slightly smoothed versions of the CMB of Figure 2 of the main
paper, as in Figure S4

Figure S4: Simulation of a Gaussian random field on the sphere with a realistic CMB spectrum smoothed
with a Gaussian kernel with full width half maximum 120 arcmin.

For each of these simulations we performed the following steps:

1. In preparation for the CMB analysis of Example 2, persistence diagrams for the H0

and H1 homologies for northern and southern spherical caps (60 degrees from the
north and south poles) were calculated, using PHAT - Persistent Homology Algo-
rithms Toolbox, [3]. The number of points in each diagram was around N = 500.

1HEALPix is an acronym for Hierarchical Equal Area isoLatitude Pixelization of a sphere. The pix-
elization produces a subdivision of a spherical surface in which each pixel covers the same surface area as
every other pixel, and allows for fast simulation of homogenous, isotropic random fields on the sphere, with
covariance functions appropriate for CMB. The simulation is based on representing the field as a sum of
spherical harmonics with Gaussian coefficients; cf. [28] for the theory, and for details of the numerics see
[22] and the HEALPix site healpix.jpl.nasa.gov. Section SI 4.1 has some more details.
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2. For each diagram, we estimated the parameters in a Gibbs model with Hamiltonian

H2
δ,Θ(x̃N ) = θHσ

2
H + θV σ

2
V +

3∑
k=1

δ−2θkLδ,k(x̃N ), (4)

where all terms are described in the main paper, along with the estimation procedure.

3. For each model, we produced simulations of the persistence diagrams, using the
Metropolis-within-Gibbs procedure described in the main paper.

The results of the simulation are as follows:

1. The first two pages of Table A1 in the Appendix shows all 100 sets of parameter
estimates for both homologies. Despite the fact that, a priori, there is no reason why
a Gibbs model should be a good fit for the persistence diagrams, the consistency of
the parameter estimates is obvious.

2. Figure S5 below shows the same information, but summarized as smoothed empirical
densities.

3. Although the last two items indicate considerable stability in the parameter estimates
over a number of realizations of the persistence diagrams, they do not confirm whether
or not the Gibbs measure is, in fact, a good model. To check this, we ran the MCMC
procedure on some of the estimated models, to see how they behaved as the samples
became distanced from their initial states; viz. the persistence diagrams from which
the parameters were estimated.

Figure S6 shows typical results, for one of these cases, for which the estimated parame-
ters were (δ, θ1, θ2, θ3, σ

2
H , σ

2
V ) = (0.0518,−0.2480,−0.2038,−0.1712, 0.6074, 1.2532).

While it is clear from the results that, if the number of MCMC steps is not large,
then the simulated diagram is close to the initial one, it is also clear that there is
a collapse of the diagram towards the diagonal as the MCMC proceeds. We discuss
this, along with its implications for the practitioner, in detail below.

4. In order to further study the phenomenon of the previous item, we considered sum-
mary statistics of the persistence diagrams as the MCMC progressed. The blue (full
line) graphs in Figure S7 show the empirical probability densities of average interac-
tion strength within clusters, shown after 10, 50 and 1,000 MCMC steps, for each of
the original 100 persistence diagrams. The red (dashed line) curves show the same
thing, but for the original 100 diagrams. By average interaction strength we mean
Lδ,k/nk, where nk is the number of terms making up the sum Lδ,k, defined in the
main paper. Consistent with the models fitted, we took k = 1, 2, or 3.

As in the previous item, we see an excellent fit in the early stages of the MCMC
(recall that there were only 100 replications of the MCMC runs) and less so later
on. There is also a noticeable difference between the behavior of the first, second,
and third order terms, with the deviations between the simulations and the MCMC
results becoming more significant the higher the order. However, it is important to
note that we always have n1 < n2 < n3, and typically have n1 � n2 � n3, (in
the case of Figure S7 the numbers are of the order 400, 300, and 200, respectively)
so that the actual impact of the higher order Lδ,k on the Hamiltonian, and so the
simulated persistence diagrams, is comparatively small.
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(a) (b) (c)

(d) (e)

Figure S5: Smoothed empirical densities for the five parameter estimates in the Hamiltonian (4) for the
H0 persistence diagram coming from 100 simulations of northern and southern caps of a Gaussian random
field on the sphere, at a smoothing of 120 arcmin. Northern caps are in red (broken) lines, and southern
caps are in blue (unbroken) lines. (a) θ1, (b) θ2, (c) θ3, (d) θV , (e) θH .

The data above is typical of a large number of tests that we performed, and indicate
that the answer to the first question raised in this section - regarding the reliability of the
estimation techniques - is, for those tests, positive.

As an aside, we note that the choice of parametrization is an important part of achieving
this stability. In our initial studies (and, indeed, in an earlier version of the main paper)
we wrote the Hamiltonian (4) without the factor of δ−2 before the θk’s. With this change
the Hamiltonian becomes

H2
δ,Θ(x̃N ) = θHσ

2
H + θV σ

2
V +

3∑
k=1

θ∗kLδ,k(x̃N ), (5)

so that the θ∗k here is our original δ−2θk.
While this makes no real difference to the model, it turned out to have a major effect

on the stability of the estimates of the θ∗k. The reason behind this is that although δ is
to a large extent a nuisance parameter, estimates of it vary considerably over diagrams.
Consequently, adopting the Hamiltonian (5) rather than (4) leads to high variation in the
estimates of the θ∗k. While the move to (4) was an a posteriori change of parametrization,
motivated by a seeming lack of stability, the interpretation of the θk there as energy, or
interaction, intensities also gives them an attractive physical meaning.

Regarding the second question - as to whether or not the simulations reliably replicate
the statistical properties of the persistence diagrams - the evidence is less convincing. In
fact, the simulations of the persistence diagrams, as the MCMC procedures progress, begin
to exhibit characteristics that are not typical for the diagrams as a whole, and so it is indeed
doubtful that the Gibbs models actually have stationary distributions which give realistic
models for persistence diagrams. This is observable, for example, in the progression of
diagrams in Figures S6 and S7.
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(a) (b) (c)

(d) (e)

Figure S6: MCMC simulations of a persistence diagram arising from a Gaussian random field on the
sphere. (a) The original diagram. (b)–(e) After 10, 25, 50, and 1,000 MCMC steps.

However, for the uses we make of the procedure, this is not a major concern! The
underlying approach of RST is to provide multiple instances of persistence diagrams when
the data only provides one, or a small number. In terms of the parameters nb, nr and nR
(number of steps in each MCMC block, number of block runs, and number of replications of
the entire procedure) this can be achieved in a number of ways. A general methodological
philosophy would be the following: When one believes that the model is good, it is most
efficient (from a variance point of view) to take nb and nr large, and nR small, perhaps
even nR = 1. The cost for this is bias, which will typically be proportional to the lack
of fit of the model. If one has less faith in the model itself, large nb, small nr, and large
nR is a preferable route. In this case the procedure produces random perturbations of the
original persistence diagram, rather than truly independent copies of it. Nevertheless, as
we will see from the examples in the following sections, RST also works surprisingly well
in this scenario.

This, of course, takes us to the third question raised at the beginning of this section;
viz. When it comes to applying this philosophy, it is necessary to keep track of how far, and
fast, the simulations diverge from the original data as the MCMC procedure progresses, so
as to know how to best choose the various parameters. For this we tried the most common
measures of distance between persistence diagrams; viz. the Wasserstein and bottleneck
metrics. Recall that, for two diagrams D1 and D2, the Wasserstein p-distance,Wp(D1, D2),
p > 0, is defined as

Wp (D1, D2) = inf
γ

( ∑
u∈D1

‖u− γ(u)‖p∞
)1/p (6)

where γ ranges over all matching between the points of D1 and D2, the latter having been
augmented by adding all points on the diagonal. In the limit case of p =∞ the Wasserstein
distance is known as the bottleneck distance, which is the length of the longest edge in the
best matching. From now on we shall use only p = 2, and so drop the explicit dependence



Replicating statistical topology 12 Adler, Agami, Pranav

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure S7: Summary statistics of average interaction strengths for 100 persistence diagrams. From left
to right: cluster sizes 2, 3, and 4. From top to bottom, after 10, 50, and 1,000 MCMC steps. See text for
details.

on it.
Figure S8 gives additional insight into the distancing of the MCMC simulations from the

original persistence diagrams shown in Figures S6 and S7, by showing how the bottleneck
and Wasserstein distances change as the MCMC progresses. All figures here are based on
averages taken over the same 100 simulated persistence diagrams used for Figure S7. The
left hand panels show the bottleneck distances, while the right hand panels shows the W2

differences. The first and second rows show the results of the first 50 steps of the MCMC
algorithm, first on a linear scale and then on a logarithmic scale. The last row, again on a
logarithmic scale, but based on only 20 simulations, goes out to 2,000 steps.

There are a number of interesting conclusions that can be drawn from these graphs.
The first is that there seems to be far more sample variation for the bottleneck than for the
Wasserstein distance. This is not unexpected, given that the former is highly dependent
on one, or at most only a few, outlying observations, while the latter takes into account
all the Euclidean distances in (6). This larger scale averaging should lead to additional
stability. For this reason we recommend, in practice, relying more on Wasserstein than
bottleneck distances, but the final recommendation that we shall make below turns out to
be roughly the same in both cases.
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(a) (b)

(c) (d)

(e) (f)

Figure S8: Growth of the bottleneck (a) and Wasserstein (b) differences of MCMC simulations from
a specific persistence diagram (vertical axis), as a function of the number of steps nb (horizontal axis,
1 ≤ nb ≤ 50) averaged over 100 independent persistence diagrams, as in Figure S7. Panels (c) and
(d) show the same data, but on a logarithmic scale, while (e) and (f), also on a logarithmic scale, take
1 ≤ nb ≤ 2, 000.

The second conclusion is that while the initial growth of the distances is rapid, they
approach asymptotes at exponential rates. The rapidity is clear in Panels (a) and (b), and
the exponential rate is clear from the linear behavior of the curves in the logarithmic scales.
The exponential approach to an asymptote is a standard consequence of the exponential
convergence of any Markov process to its stationary state, and is classical. The rapid
initial growth of the distance is also a common phenomenon for Markov processes, but is
not classical, and is related to phenomena treated mathematically only relatively recently,
as in the fundamental work of Diaconis and co-authors in the 1990’s (cf. [4]) and a wide
subsequent literature.

The newsworthy observation of [4] was that when shuffling a deck of 52 cards (with a
‘riffle’, or ‘dovetail’ shuffle) the effect of the initial ordering of pack was, to a large extent,
lost after only 7 shuffles. Furthermore, the technical literature since [4] has shown that
this phenomenon of rapid ‘mixing’ is common, although there is nothing sacrosanct about
the number 7.
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In our case, the evidence is that the ‘magic number’ is found at the point where the
initial rapid growth of the distance functions ceases, which is approximately 10 for the
bottleneck distance and somewhere in the range [10, 20] in the Wasserstein case. At
10 steps, therefore, the results of Figures S7 and S8 indicate that the dependence of the
MCMC on the initial persistence diagram has dropped significantly, while at the same time
the MCMC has produced persistence diagrams remaining close to the true distribution.
Interestingly, the same range of numbers arises in the example of two circles treated below;
cf. Figure S11.

These numbers are used in the examples below. (Actually, at the time we studied them
we had not done the analysis leading to Figures S8 and S11. Once again, kudos to a referee
for asking good questions and, in this case, also suggesting that we use the Wasserstein
metric in this setting.)

Thus, in terms of the third question raised at the beginning of this section, our advice to
the practitioner is to produce graphs such as those in Figure S8 and rely on the information
they contain for choosing the MCMC parameters nb, nr and nR.

As an aside, it is worth commenting that the subsampling methods in common usage,
and described above, are not that different, in some aspects, from the perturbative sce-
nario of RST. They, too, do not produce independent copies of the original diagram, or its
derivative statistical summaries, but rather provide perturbations that contain information
about statistical variability.

SI 3. Example 1: Learning two circles
This section gives further details on the first (toy) example treated in the paper, that of
investigating the persistence diagram generated from a random sample from two concentric
circles in the plane.

There are a number of points that we should make, before describing the analysis in
detail. The first is to emphasize that this is indeed a very simple situation, and using RST
to analyze it is definitely overkill. In fact, the empirical density and persistence diagram of
Figure 1 of the paper are so simple, that anything beyond just looking at them is probably
overkill. Our aim here is simply to use this simple example as a test case.

The second point is that we make no attempt to analyze the H1 diagram. With only
three points in this diagram, any attempt to fit a parametric model would be foolish.
Indeed, with the order of only 50 points in the H0 diagram, and Gibbs measures which
typically estimate 5 parameters (plus the nuisance parameter δ) it is not clear a priori that
RST will work even in this case. Perhaps surprisingly, and certainly reassuringly, it does.

The last point is to emphasize, once again, that we are primarily interested in repli-
cating the ‘persistence diagram’ stage of (3). Although we will propose a particular test
statistic for the ‘analysis’ stage, the fact that the reader might prefer a different statistic
does not affect the replication stage, which can be applied, just as well, with alternative
statistics.

SI 3.1 The Gibbs model
Following the procedure described in the paper, we fitted the Gibbs measure with Hamilto-
nian (4) to the H0 persistence diagram, without the ‘point at infinity’; viz. the point with
the highest birth time. (We recommend removing this point in all small data sets, since it
merely indicates the existence of an object and so is different in nature to all others.) This
yielded the parameter estimates

(δ, θ1, θ2, θ3, θV , θH) = (0.0038,−0.0225,−0.0104, 0, 144.7, 66.3). (7)
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Note that θ3 = 0, since the model selection criteria we used (both AIC and BIC) removed
this parameter from the model. This is not surprising, given the small size of the data set
(i.e. the persistence diagram).

Before attempting any further analysis, we check that the estimation procedure is
reliable in this case, and whether or not the parameter set (7) ‘makes sense’. Analogous
to the investigation for random field generated diagrams in Section SI 2.2, we performed
two checks. The first was to simulate the two-circle data 100 times, thus producing 100
persistence diagrams. For each of these we estimated the four parameters θ1, θ2, θV and
θH (having, a priori, set θ3 ≡ 0). Empirical densities for each of the parameter estimates
are shown in Figure S9, which indicates a mild spread in the estimates and reasonable
stability.

(a) (b)

(c) (d)

Figure S9: Smoothed empirical densities for the four parameter estimates in the Hamiltonian (4) for the
two circle data. (a) θ1, (b) θ2, (c) θV , (e) θH .

The second check involved running the MCMC procedure on the model with the esti-
mated parameters, and comparing the simulations – considered, as before, as perturbations
– with the original persistence diagram. Fig S10 shows some examples of this, at different
stages. Overall, we observe a similar phenomenon to that observed in Section 2.2 for the
Gaussian random field example, albeit considerably less marked; viz. (much slower) col-
lapse of the persistence diagram towards the diagonal. Figure S11 shows what happens
when running the MCMC routine, by studying the bottleneck and Wasserstein distances
between the initial persistence diagram and those produced by the MCMC.

As in the Gaussian random field case that we studied in detail in Section 2.2, it once
again seems that while the stationary distribution of the Gibbs measure is probably not
an accurate model for the persistence diagram, treating the procedure as a mechanism
for generating weakly dependent replications (perturbations) of the diagram is, neverthe-
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less, appropriate, and following the behavior of the Wasserstein distance provides a useful
practical tool for choosing MCMC parameters.

One fact that is worthwhile noting on comparing Figure S11 here and Figure S8 from
the Gaussian example is the considerably higher (relative) variance of the estimated differ-
ences in the present case. At first thought, one might imagine that two circle case will be
better behaved, since two circles create a much simpler topology than does a Gaussian field
on a sphere. However, the fact that there are far more points in the persistence diagram in
the Gaussian case leads to considerably more stability when studying properties of these
diagrams.

(a) (b) (c)

(d) (e)

Figure S10: MCMC simulations of a persistence diagram arising from the two circle problem (a) The
original diagram. (b)–(e) After 10, 25, 50, and 1,000 MCMC steps. See text for details.

SI 3.2 Testing for homology
The statistics we chose to test for significant homology in the persistence diagram were
the lifetime order statistics, T1, T2, . . . of all lifetimes than the ‘infinite’ one. Removing the
infinite lifetime point, and given the remaining points (di, bi), of a persistence diagram, the
j-th order statistic Tj is the j-th largest among the differences |di − bi|.

Having chosen statistics, we performed 1,000 MCMC simulations with the parameters
(7) with a number of choices of the simulation parameters nb, nr and nR defined in the
paper. For each choice of these three parameters we computed both bootstrap style con-
fidence intervals for the Tj and p-values for the order statistics of the original persistence
diagram. More formally, let P∗j be the empirical distribution of Tj over the 1,000 sim-
ulations, and T orgj the j-th order statistic of the original persistence diagram. Then a
two-sided confidence interval at level α for the true Tj is [T orgj − cj,1, T orgj + cj,2] where

cj,1 = inf
{
c ≥ 0 : P∗j

(
T ≤ T orgj − c

)
≤ α/2

}
,

cj,2 = inf
{
c ≥ 0 : P∗j

(
T ≥ T orgj + c

)
≤ α/2

}
,

and T is a random variable with distribution P∗j . An alternative, one-sided confidence
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(a) (b)

(c) (d)

Figure S11: Growth of the bottleneck (a) and Wasserstein (b) differences of MCMC simulations from
two-circle persistence diagrams (vertical axis), as a function of the number of steps nb (horizontal axis,
1 ≤ nb ≤ 50) averaged over 100 simulations of the diagrams. Panels (c) and (d) are on a logarithmic scale,
for 1 ≤ nb ≤ 500.

interval [0, T org + cj ] can be defined by taking cj = cj,2 as above, but with α replacing α/2
in the definition.

The p-value for T orgj is, similarly, defined as

pj = P∗j (T > T org) .

On the basis that large values of the order statistics Tj correspond to significant points
in the H0 persistence diagram – i.e. to connected components of the underlying object – we
tested them sequentially, as follows. Firstly, we tested T1 for significance with a one-sided
test. If it was significant, only then did we test T2, and only if it was significant did we
test T3, and so on.

Table S1 summaries the results of this procedure, for three different MCMC scenarios,
each with a burn in period of 10 iterations and with (nb, nr, nR) given by (500,20,50),
(500,40,25), and (500,100,10).

In view of the fact that it is unlikely that the stationary distribution of the Gibbs
measure behind the MCMC is actually the right model for the persistence diagram, the
agreement between the three scenarios is remarkable. In all cases, using either one-sided,
5% confidence intervals, or by considering p-values, the results indicated that T1 and T2

were highly significant, leading to the conclusion that the persistence diagram summarized
an object with three components; viz. the component with infinite lifetime, and two more.
Given that there are quite a few points in the persistence diagram close the the one corre-
sponding to T2, it is impressive that RST, which is most natural to apply in scenarios in
which the diagram has a large number of points, worked so well in this small data situation,
claiming only one superfluous component.

SI 3.3 Alternative approaches
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Order Stat. T org
j (nb, nr, nR) Conf. Interval p-value

T1 0.3161 (500,20,50) [0, 0.2430] 0.0000
(500,40,25) [0, 0.2317] 0.0010
(500,100,20) [0, 0.2271] 0.0000

T2 0.2047 (500,20,50) [0, 0.1872] 0.0160
(500,40,25) [0, 0.1887] 0.0090
(500,100,20) [0, 0.1772] 0.0110

T3 0.1535 (500,20,50) [0, 0.1669] 0.1080
(500,40,25) [0, 0.1753] 0.1220
(500,100,20) [0, 0.1548] 0.0560

Table S1: Testing order statistics in the H0 persistence diagram for two circles, showing one-sided 5%
confidence intervals and p-values. See text for details.

Although the two-circle example is meant to be primarily illustrative of how RST works,
and, because of the small number of points in the persistence diagram is not its natural
scenario, it is almost obligatory that we compare the results to those from some existing
methods.

Consequently, we also undertook an analysis using the bootstrap cum confidence band
approaches of [12] and [20]. (As usual, see [43] for more detailed references.) In brief,
this approach produces replicates of the persistence diagram by subsampling either the
data or the diagram, and then produces confidence intervals based the bottleneck norm of
the diagrams. This yields ‘100(1 − α)% acceptance regions’, as in Figures S12 and S13,
which are parallel to the diagonal, and within which all but 100(1−α)% of the subsampled
persistence diagrams fall. All points outside these regions are then considered ‘significant’
at the 100α% level, and indicative of true homology.

Applying the techniques of [12] and [20] to our persistence diagram, with α = 0.05,
gave the results in (a) and (b) of Figure S12 and (a) of Figure S13, respectively.

Figure S12 (a) shows that only one H0 component is identified, and Figure S13 (a)
identifies none. RST did much better than this, identifying two components correctly
and providing marginal (but incorrect) for a third. On the other hand, Figure S12 (b)
(marginally) identifies one H0 component, whereas RST was not applicable here at all
due to the small number of points in the H0 diagram. The procedure of [20] leads to a
single confidence interval for both homologies, and so Figure S13 (a) is also relevant for
H1. Again, it fails to identify any significant points.

Thus, the evidence at this point is that RST is doing very well against existing methods,
at least as far as H0 is concerned.

However, a careful referee decided to check out calculations. One parameter value that
we have not defined yet is the bandwidth h in equation (1) of the main paper. This was the
bandwidth used to compute the empirical density shown in Figure 1 there, the upper level
sets of which produced the persistence diagrams with which we have worked throughout.
The value we took, somewhat arbitrarily, was h = 0.1, but in that version of the paper we
neglected to mention this, so the referee carried out his/her checks with another value, in
this case h = 0.2. The results are shown in Figures S12 (c) and (d) and S13 (b). As is
clear from there, with this bandwidth the methods of [12] correctly identify the number of
points in both the H0 and H1 diagrams, while those of [20] are still outperformed by RST.

Overall, however, it is important to re-emphasise that RST is a large data technique.
Thus we now turn to a real data scenario, where the persistence diagrams contain large
numbers of points, and where we believe RST comes into its own as a promising alterna-
tive, and complement, to existing methods.
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(a) (b)

(c) (d)

Figure S12: Confidence bands for the persistence diagram of the two circles, using the bootstrap based
techniques of [12], (a) H0, h = 0.1. (b) H1, h = 0.1 (c) H0, h = 0.2. (d) H1, h = 0.2 .

SI 4. Example 2: Analyzing CMB data
In the main paper, Figure 2 showed a reconstructed version of the CMB data from the
Plank experiment, created using the Commander-Rule technique, without saying too much
about what this was.

Although it would take far too much space to carefully define precisely what ‘recon-
structed’ actually means, it is nevertheless worthwhile to devote a paragraph or two to
various technical aspects of CMB data before we describe the RST analysis.

SI 4.1 The data
As described in the main paper, CMB is real-valued data on a sphere. More precisely, the
CMB sky maps are presented in the HealPix [22] format, already mentioned in Section SI
2.2, which is based on a recursive equal-area pixelization of the sphere. It starts, using
the faces of a rhombic dodecahedron, by decomposing the sphere into twelve patches of
equal area. Further resolution is achieved by dividing these 12 base patches into N2 equal
area patches, so that the total number of patches at this resolution is 12N2. Maximum
resolution is at N = 2048. Figure S14 (a) shows a simulated Gaussian random field using
this scheme, with N = 128.

While the random function in (a) of Figure S14 looks not unlike the reconstructed CMB
of Figure 2 of the main paper, unfortunately neither of them look much like ‘raw’ CMB
data, or so-called ‘fiducial sky’ in (b). The map here is based on measurements which
include instrument noise, astrophysical foregrounds, and various lensed scalar, tensor, and
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(a) (b)

Figure S13: Confidence bands for the persistence diagram of the two circles, using the bootstrap based
techniques of [20]. (a) H0, H1, h = 0.1. (b) H0, H1, h = 0.2.

(a) (b)

Figure S14: (a) Illustration of a 2-dimensional Gaussian random field simulated on the surface of the
sphere, at the same resolution of the CMB in (b). (b) The fiducial sky as observed by the Planck satellite
at frequency band 143GHz. Figure courtesy the Planck consortium.

non-Gaussian CMB components, and are taken at a particular frequency (in this case,
143GHz). The most obvious problem with the raw data of Figure S14(b) is the large ‘belt’
around the ‘equator’. This is a region of the sky blocked by the Milky Way, and so there
are no reliable measurements of the CMB in this region. Similarly problematic regions,
of various sizes, appear throughout the sky, due to a variety of cosmological phenomena.
Careful study of CMB must therefore take all of this into account.

In a masterpiece of data cleaning, involving classical physics, cosmological knowledge,
and a lot of modeling, all these factors are (as much as possible) accounted for. Fur-
thermore, the data from the eight observed frequency bands are combined, using what
is known as a ‘component separation technique’, to produce the final ‘optimized’, data,
known as a ‘reconstructed map’. One aspect of this cleaning, of specific importance for
us, is that data from the poorly observed regions are replaced with what are, effectively,
interpolations based on simulations of isotropic, Gaussian, random fields. The Planck team
produces these reconstructed maps through four different techniques: Commander-Ruler
(C-R), NILC, SEVEM, and SMICA. A detailed description of these procedures can be
found in [33]. Throughout this paper we work with the C-R maps, which is what produced
the CMB of Figure 2 of the main paper.

It is accepted practice that, for many cosmological purposes, it is sufficient to work
with reconstructed maps, which is what we do.

Recall that our aim is to exploit RST to test for inhomogeneity in the reconstructed
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CMB, and we do this by fitting Gibbs measures to the persistence diagrams generated
by the CMB in different parts of the sky, comparing the parameters in the corresponding
Hamiltonians. From the brief description of CMB above, it is clear that in doing so we
should avoid using data from near the equator. All such data is based on a reconstruction
which assumes both Gaussianess and homogeneity, and so is unreliable from our point of
view.

Consequently, we concentrate on two regions, which we will call the the ‘northern and
southern caps’ of the CMB data, and which correspond to the top and bottom 60 degrees
of data. This cuts out 30 degrees on either side of the equator, and so takes us into regions
in which we expect reconstruction will have only minimal effect on the topology of the
upper level sets which we use as filtrations for persistence diagrams.

SI 4.2 The Gibbs model
As described in the main paper, we took 5 smoothed versions of the C-R reconstructed
CMB, restricted to the northern and southern caps, each with different Gaussian smoothing
kernels, at full width half maximum 300, 180, 120, 90, and 60 arcminutes. The highest
level of smoothing (300’) suppresses most of the fine scale variation, while the 60’ level is
closest to the actual CMB.

For each such smoothing, we produce persistence diagrams generated by the upper
level set filtration, for both H0 and H1, leading to a total of 20 = 5 × 2 × 2 diagrams.
Although the aims there are different, details of the numerical procedure can be found in
[36], and examples of two persistence diagrams are given in Figure 3 of the main paper.
The parameter estimates for all 20 cases are given in Table S2 for the H0 persistence
diagrams, and in Table S3 for the H1 diagrams. At this point, only the first two lines for
each smoothing parameter are relevant. These are the parameter estimates.

As before, the questions of the stability of the parameter estimates, and of the effective-
ness of the Gibbs measure as a model for the persistence diagrams, need to be addressed.
However, we can assume that, at least in a null hypothesis scenario, CMB behaves like
the realization of an isotropic Gaussian random field. Consequently, the discussion of the
Gaussian case, in Section SI 2.2, along with extensive simulations discussed there, also
serve for justification in the current situation.

SI 4.3 Testing for inhomogeneity
In order to test for CMB inhomogenity, as described in the main paper, we need to compare
the Gibbs measure parameter estimates for the two caps given in Tables S2 and S3.

(There are, of course, many other methods that one could use to test for differences
between the two caps, even when restricting the methodology to that of TDA. These could
include measuring the differences between their upper level set persistence diagrams with
a standard TDA metric, such as the bottleneck metric, or comparing their Euler character-
istic curves, which is a common diagnostic tool in cosmology (e.g. [23, 38]), or measuring
differences between persistence landscapes. However, at the risk of belaboring the by-now
obvious, since for each cap, and for each smoothing, there is only one observation, and
additional universes that might allow us to obtain repeated observations are not readily
available, all of the alternative methods will require some form of artificial replication.
Planning for RST requires estimating the parameters of Tables S2 and S3 and so, with
these at hand, working with them for hypothesis testing is a natural choice.)

Thus, given the parameter estimates in Tables S2 and S3, we now adopt a rather simple
approach, that of pairwise tests of significance. However, in order to carry these out, we
need estimates of variance for the parameter estimates themselves. There are at least four
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Smoothing θ̂1 θ̂2 θ̂3 θ̂H θ̂V

300’

North -0.3582 -0.2187 -0.2258 1.0156 0.7685
South -0.6140 -0.4573 -0.3941 0.6287 0.5120
σ̂N,Info 0.0283 0.0357 0.0381 0.2027 0.1622
σ̂S,Info 0.0656 0.0682 0.0662 0.1619 0.1500
p-value 0.0003 0.0019 0.0276 0.1357 0.2455
σ̂N,Sim 0.0827 0.1177 0.1572 0.1738 1.8287
σ̂S,Sim 0.0785 0.1204 0.1521 0.2231 2.0230
p-value 0.0249 0.1564 0.4418 0.1713 0.9251

180’

North -0.2939 -0.1869 -0.1073 0.8262 0.8259
South -0.2631 -0.3757 -0.2556 0.6410 0.8151
σ̂N,Info 0.0144 0.0169 0.0182 0.1015 0.1043
σ̂S,Info 0.0271 0.0268 0.0261 0.0790 0.1036
p-value 0.3155 0.0000 0.0000 0.1500 0.9414
σ̂N,Sim 0.0424 0.0557 0.0663 0.1269 0.6037
σ̂S,Sim 0.0490 0.0624 0.0686 0.1591 0.7189
p-value 0.6344 0.0240 0.1198 0.3627 0.9908

120’

North -0.2039 -0.2033 -0.1719 0.8333 0.8623
South -0.2784 -0.2320 -0.2072 0.5185 0.7703
σ̂N,Info 0.0105 0.0105 0.0102 0.0672 0.0695
σ̂S,Info 0.0095 0.0100 0.0103 0.0454 0.0665
p-value 0.0000 0.0478 0.0145 0.0001 0.3386
σ̂N,Sim 0.0257 0.0298 0.0332 0.1091 0.3027
σ̂S,Sim 0.0260 0.0332 0.0440 0.1390 0.3113
p-value 0.0415 0.5196 0.5214 0.0748 0.8322

90’

North -0.1891 -0.1980 -0.1664 0.7993 0.7730
South -0.2446 -0.1857 -0.1785 0.5753 0.7771
σ̂N,Info 0.0062 0.0060 0.0061 0.0488 0.0477
σ̂S,Info 0.0040 0.0055 0.0058 0.0357 0.0475
p-value 0.0000 0.1327 0.1525 0.0000 0.9515
σ̂N,Sim 0.0207 0.0239 0.0277 0.0975 0.2010
σ̂S,Sim 0.0219 0.0259 0.0293 0.1253 0.2007
p-value 0.0658 0.7276 0.7647 0.1582 0.9885

60’

North -0.2363 -0.2047 -0.1456 0.7301 0.5638
South -0.2361 -0.2027 -0.1847 0.6121 0.6294
σ̂N,Info 0.0027 0.0027 0.0003 0.0355 0.0272
σ̂S,Info 0.0024 6.5e-06 5.9e-06 0.0277 0.0275
p-value 0.9459 0.4670 0.0000 0.0087 0.0901
σ̂N,Sim 0.0301 0.0164 0.0181 0.0892 0.1156
σ̂S,Sim 0.0530 0.0270 0.0244 0.1239 0.1329
p-value 0.9968 0.9506 0.1984 0.4396 0.7096

Table S2: H0 persistence diagram parameter estimates, along with estimates of variance
and p-values for tests of North vs. South. See text for details.
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Smoothing θ̂1 θ̂2 θ̂3 θ̂H θ̂V

300’

North -0.2994 -0.4487 -0.3156 0.7410 1.2152
South -0.4545 -0.4416 -0.4362 0.3474 0.7910
σ̂N,Info 0.0022 0.0022 0.0023 0.1944 0.3435
σ̂S,Info 0.0043 0.0042 0.0041 0.0877 0.1975
p-value 0.0536 0.9286 0.1318 0.0652 0.2844
σ̂N,Sim 0.1301 0.1423 0.1914 0.1701 0.7001
σ̂S,Sim 0.1228 0.1513 0.2010 0.2002 0.5961
p-value 0.3861 0.9725 0.6638 0.1341 0.6446

180’

North -0.3175 -0.1709 -0.0824 0.6763 1.0586
South -0.2635 -0.4110 -0.4796 0.4220 0.8218
σ̂N,Info 0.0140 0.0172 0.0198 0.0816 0.1315
σ̂S,Info 0.0402 0.0402 0.0379 0.0618 0.1197
p-value 0.2048 0.0000 0.0000 0.0130 0.1829
σ̂N,Sim 0.0520 0.0686 0.0819 0.1095 0.4294
σ̂S,Sim 0.0520 0.0592 0.0735 0.1288 0.3872
p-value 0.4627 0.0080 0.0000 0.1327 0.6821

120’

North -0.2254 -0.2436 -0.1845 0.5986 0.8074
South -0.2871 -0.1934 -0.1734 0.4229 0.9385
σ̂N,Info 0.0123 0.0122 0.0119 0.0501 0.0721
σ̂S,Info 0.0092 0.0104 0.0112 0.0353 0.0767
p-value 0.0001 0.0017 0.4996 0.0042 0.2128
σ̂N,Sim 0.0300 0.0332 0.0387 0.0849 0.2661
σ̂S,Sim 0.0332 0.0346 0.0436 0.1054 0.2735
p-value 0.1675 0.2944 0.8498 0.1940 0.7312

90’

North -0.2176 -0.1896 -0.2125 0.5579 0.7206
South -0.2475 -0.1942 -0.1922 0.4705 0.8633
σ̂N,Info 0.0067 0.0068 0.0066 0.0367 0.0499
σ̂S,Info 0.0045 0.0051 0.0056 0.0292 0.0535
p-value 0.0000 0.5939 0.0193 0.0625 0.0511
σ̂N,Sim 0.0257 0.0211 0.0273 0.0678 0.1828
σ̂S,Sim 0.0214 0.0255 0.0290 0.0854 0.1811
p-value 0.3712 0.8906 0.6107 0.4230 0.5792

60’

North -0.1956 -0.1806 -0.1646 0.5132 0.6361
South -0.1710 -0.2273 -0.2420 0.4330 0.6130
σ̂N,Info 0.0031 0.0031 0.0031 0.0238 0.0298
σ̂S,Info 0.0065 0.0053 0.0053 0.0201 0.0280
p-value 0.0006 0.0000 0.0000 0.0101 0.5720
σ̂N,Sim 0.5626 0.2799 0.1279 0.0856 0.1373
σ̂S,Sim 0.5291 0.2052 0.0740 0.0770 0.2277
p-value 0.9746 0.8931 0.6005 0.4861 0.9308

Table S3: H1 persistence diagram parameter estimates, along with estimates of variance
and p-values for tests of North vs. South. See text for details.
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ways to obtain these:

(i) Subsampling: Subsample the persistence diagrams, produce estimates of the θk for
each subsample, and use these to estimate their variances. Note that the subsampling
must be done on the diagrams themselves, and not on the original CMB data, since
there are no natural replications of the CMB.

(ii) Fisher information matrices: In estimating the θk, the Hessian of the log (pseudo)
likelihood at its maximum can be used to produce estimates of not only the required
variances, but also of the full covariance matrix of the θ̂k.

(iii) MCMC resampling: Having estimated the θk, we have a model for the persistence
diagram, which can then be simulated by MCMC as described in the main paper.
Re-estimating the parameters from such simulations would give information on the
variance (and, indeed, full distribution) of the original set of estimates.

(iv) The HEALPix software that we have already mentioned produces not only simula-
tions of purely Gaussian random fields, but also produces simulations of the ‘true,
reconstructed, CMB’. The estimation process can be repeated on these simulations
to obtain distributional information on the θ̂k.

We did not try (i), since we were primarily interested in seeing how RST worked.
Nevertheless it is an obvious route to take in the topological investigation of CMB.

Approach (iii) is natural within the framework of RST, and we experimented with it.
In the end, we will not report on detailed results, since they were similar to those from
(iv), which is the approach we adopted in the end. One problem with (iii) was the amount
of time it took to produce simulations under the MCMC scheme, whereas the HEALPix
simulations of (iv) were relatively quick and easy to generate. Another, more conceptual
problem, was that it is unclear what impact estimation error in the original set of estimates
has on variance estimates from the MCMC. We plan to study this phenomenon in the future
on smaller scale problems.

This leaves us with (ii) and (iv). Results in an earlier version of the main paper were
based purely on (ii), but we now add (iv), which we believe to be more reliable. However
it is also more time and computer consuming. These methods lead to the additional rows
in Tables S2 and S3, which we now explain.

For each smoothing level in these tables, we have already noted that the lines ‘North’
and ‘South’ give the estimates of the θk via the pseudo-likelihood approach described in the
main paper. The two lines following give estimates of the standard deviations σ̂N,Info and
σ̂S,Info of these estimates (for north and south, respectively) based on the sample Fisher
information matrix.

The row following the standard deviations gives p-values for simple pairwise tests of
the differences

∆k =
θ̂Nk − θ̂Sk√

σ̂2
N,Info + σ̂2

S,Info

, (8)

where the N and S superscript on the θ̂k indicate north or south. Inference for the ∆k,
based on their approximate normality, with the empirical Fisher information matrix as the
asymptotic covariance matrix, is as justified in our Gibbs, pseudo-likelihood scenario much
as it is in the classical maximum likelihood scenario (cf. [11, 14]). The p-values that are
significant at the 5% level are highlighted.
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The three lines following, for each smoothing level, are similar, except that the estimates
of the standard deviations, σ̂N,Sim and σ̂S,Sim, are now taken from the simulation procedure
described in (iv) above. Again, p-values that are significant at the 5% level are highlighted.

Since there are multiple tests being carried out here, and it is unlikely that they are
independent, it is difficult to draw definitive conclusions from Tables S2 and S3. (Since the
p-values are given explicitly, the reader is invited to perform any of the standard techniques
for multiple testing, such as the classical Bonferroni correction, the Benjamini-Hochberg
FDR procedure [5], or a chi-squared goodness of fit test. We actually did so, but did not
find the results particularly illuminating.) Nevertheless, the highlighting in the tables leads
to two distinct visual impressions:

(i) The tests based on the variances computed via the estimated information matrix yield
more statistically significant results (19) than do the tests based on simulation derived
variances (5). It is hard to know whether this means that this former approach is
more powerful, or whether it simply leads to false positives. Experimentation with
simulations leads us to believe that the latter situation is the case, and so we have
more faith in the simulation based results. However, since all simulations are based
on imperfect models, that, among other things, actually assume isotropy, it is hard
to be completely definite about this.

(ii) Most of the significant north/south differences occur at the middle levels of smooth-
ing. This is particularly noticeable in Table S3, for the H1 parameters, but also, to
some extent, in Table S2. Table S2 also shows differences at the level of 300 arcmins
of smoothing.

It turns out that there are good cosmological explanations for these impressions, and
we will see in Section SI 4.4 below.

The result of all this analysis is that adopting a parametric approach via Gibbs mea-
sures, at least as applied to the complex CMB data set, leads to some interesting patterns
of results. That, for this data, the patterns are indicative, but not definitive, is not sur-
prising. CMB is famously difficult data to analyse, and even hints of new phenomena are
of considerable interest to cosmologists.

In the following, final, section we give the briefest of cosmological interpretations of
what the above analysis has shown us.

SI 4.4 Cosmological interpretations of the statistical analysis
Our aim in this final section is not to delve deeply into Cosmology, but rather to put the
statistical findings of the previous section – of a pattern of topological differences between
the northern and southern CMB, as seen via Gibbs measure parameter estimates – into
perspective for the non-cosmologist.

The hypothesis of asymmetry in the temperature distribution between the northern
and the southern hemispheres of the CMB has been the focus of many studies in the past
decade and a half, with pioneering works by Eriksen et al [19], who studied it via power
spectrum estimation, and Park [32], who studied it using topological statistics based on the
genus (Euler characteristic) of upper level sets. In both cases they worked with WMAP
data, but they worked at different ‘angular scales’, a term which requires some explanation.

An important issue in CMB analysis is the issue of smoothing. This is related to the
physical fact that points in the CMB sphere that are separated by a degree or larger, are
not causally connected, in the sense that they are so far away from one another that they
are less susceptible to influences from late time effects that may alter the CMB photon
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characteristics. (Recall that the measured CMB is coming from sources some 13 billion
light years away, so that a one degree of angular separation translates into a distance of
the order of hundreds of megaparsecs between the sources.)

For example, it is known that, at small scales of the order of arcminutes, the frequency
of the CMB photons is Doppler-shifted due to the influence of the gravitational poten-
tial generated by the intermediate matter distribution between the CMB sphere and the
observer [41]. Such effects are negligible at larger scales.

Returning now to the literature, we note that while [19] focuses on large angular scales
(typically 2◦ − 5◦), while [32] focuses on sub-degree scales. Since the appearance of these
papers, studying the north-south asymmetry in the CMB has become a standard practice,
culminating, most recently, in the studies using data from the Planck satellite [34]. Re-
gardless of the issue of angular scales, the general consensus (as opposed to ‘agreement in
the face of overwhelming evidence’) is that the properties of the temperature distribution
in the north appear to be different from those in the south.

As in [19], we, throughout, have concentrated on scales larger than one degree. Thus,
if the smoothing is performed, as in our examples, with Gaussian kernels with ‘full width,
half maximum’ parameter α-arcmin (roughly twice the standard deviation σ) with

α = 60, 90, 120, 180, 300,

this translates into angular scales of between 2–5 angular degrees.
Consequently, at least at the higher levels of smoothing, most our results should be free

of most late time effects, and any differences that the above analysis shows should be true
CMB phenomena, unaffected by late time effects.

With this in mind, let us look back at the results in Tables S2 and S3. Both tables
show that many parameter estimates differ significantly between the north and the south
caps, for both H0 and H1 parameter sets, and for scales approximately 2◦ − 5◦. Overall,
the differences are more marked at the higher smoothing scales. This is consistent with
the findings of [19]. This is also roughly the scale at which we found additional anomalous
behaviour in the CMB with respect to the standard cosmological model; cf. [35].

In closing, we note that the indications of non-homogeneity at these scales (and even
possible non-Gaussianity, which would be consistent with our results, although we did not
explicitly consider this as an explanation for them) which we found in the previous section
are studied, in far more detail, in [35]. The methodology of [35] is also topological in
nature, but quite different to what we have developed in the current paper. Here we have
been motivated by adopting a vanilla approach, based on a generic analysis of persistence
diagrams, that will work for a wide variety of cases. [35] develops more powerful topological
methods, specifically tailored to CMB analysis.



 

 (a) Parameter estimates: Southern cap 

V  H  
3  2  1  

 

1.4782 0.5594 -0.1883 -0.2239 -0.2092 1  

1.3001 0.5436 -0.2495 -0.2616 -0.1500 2 

1.2806 0.7893 -0.1491 -0.1641 -0.2204 3 

1.2028 0.5089 -0.2269 -0.2310 -0.2355 4 

0.8027 0.7364 -0.2028 -0.2066 -0.2721 5 

1.2384 0.4859 -0.1936 -0.1837 -0.2188 6 

1.0558 0.5397 -0.1994 -0.2149 -0.2386 7 

1.3957 0.5081 -0.1686 -0.2083 -0.2463 8 

1.2619 0.6217 -0.1412 -0.1939 -0.2327 9 

1.4256 0.5072 -0.1378 -0.1875 -0.2316 10 

      

1.0217 0.5536 -0.1703 -0.2008 -0.2615 11 

1.3893 0.5137 -0.1399 -0.2061 -0.2747 12 

1.1939 0.4996 -0.1721 -0.2002 -0.2563 13 

1.0959 0.5906 -0.1854 -0.2230 -0.2149 14 

1.1344 0.6051 -0.1845 -0.2283 -0.2145 15 

1.0845 0.4982 -0.2245 -0.2709 -0.2072 16 

1.4760 0.3851 -0.1728 -0.2016 -0.2703 17 

1.0986 0.5681 -0.1682 -0.1844 -0.2514 18 

1.2848 0.6543 -0.1858 -0.1536 -0.2535 19 

1.0321 0.4728 -0.2390 -0.2724 -0.2405 20 

      

1.3287 0.3964 -0.1654 -0.1691 -0.2371 21 

1.6082 0.4524 -0.1907 -0.2019 -0.2591 22 

1.8069 0.4297 -0.1411 -0.1879 -0.2471 23 

1.1758 0.5668 -0.1371 -0.2210 -0.2417 24 

1.2852 0.4817 -0.2700 -0.2742 -0.1898 25 

1.1705 0.5554 -0.1630 -0.2183 -0.2651 26 

1.1028 0.5741 -0.1551 -0.2278 -0.2655 27 

1.2583 0.4904 -0.2669 -0.2878 -0.2053 28 

1.7888 0.6254 -0.1607 -0.1840 -0.1963 29 

1.2140 0.4580 -0.2448 -0.2592 -0.1941 30 

      

1.4140 0.6826 -0.0947 -0.1500 -0.2134 31 

1.3556 0.5984 -0.1407 -0.1527 -0.2345 32 

1.2103 0.3093 -0.1986 -0.2274 -0.2906 33 

1.6455 0.4527 -0.2003 -0.2111 -0.2527 34 

1.0174 0.5144 -0.1814 -0.1920 -0.2506 35 

1.0795 0.4760 -0.2183 -0.2467 -0.2171 36 

1.1064 0.4379 -0.2074 -0.2507 -0.2515 37 

1.3466 0.4081 -0.2168 -0.2412 -0.2471 38 

1.1544 0.4046 -0.2308 -0.2664 -0.2236 39 

1.2640 0.4403 -0.2270 -0.2489 -0.2377 40 

      

1.1621 0.3855 -0.1843 -0.2289 -0.2680 41 

0.9502 0.5195 -0.2515 -0.2519 -0.2471 42 

1.2306 0.5558 -0.2316 -0.2109 -0.1992 43 

1.0905 0.4569 -0.2438 -0.2320 -0.2503 44 

1.2434 0.7309 -0.1631 -0.2059 -0.2334 45 

1.5510 0.4059 -0.1632 -0.2152 -0.2462 46 

1.3947 0.4486 -0.2283 -0.2525 -0.2141 47 

1.1914 0.4167 -0.2316 -0.2698 -0.2470 48 

1.1253 0.6608 -0.1589 -0.1846 -0.2181 49 

1.4489 0.3548 -0.2289 -0.2603 -0.2555 50 

 

 (a) Parameter estimates: Southern cap 

V  H  
3  2  1  

 

1.1845 0.3877 -0.2055 -0.2503 -0.2598 51 

1.1756 0.4471 -0.2410 -0.2469 -0.2472 52 

1.1802 0.3979 -0.2773 -0.2671 -0.2464 53 

1.1448 0.6909 -0.2155 -0.2448 -0.2179 54 

1.4229 0.4822 -0.1455 -0.2403 -0.2212 55 

1.0624 0.5515 -0.1464 -0.1931 -0.2503 56 

1.3464 0.4729 -0.1935 -0.2334 -0.2190 57 

1.4426 0.4601 -0.1769 -0.2250 -0.2697 58 

1.1015 0.4562 -0.3154 -0.2533 -0.1880 59 

1.1943 0.5695 -0.1897 -0.2395 -0.2120 60 

      

1.4194 0.6421 -0.1664 -0.2359 -0.1970 61 

1.1138 0.5679 -0.2375 -0.2372 -0.2229 62 

1.2152 0.4865 -0.1657 -0.2152 -0.2706 63 

1.3990 0.5156 -0.1373 -0.1827 -0.2589 64 

1.3614 0.6085 -0.1702 -0.1959 -0.2119 65 

1.1390 0.4760 -0.1460 -0.2081 -0.2568 66 

1.3428 0.4460 -0.2568 -0.2883   -0.1659 67 

1.4778 0.4093 -0.2072 -0.2389 -0.2711 68 

1.5442 0.4833 -0.2008 -0.2510 -0.2071 69 

1.4840 0.5090 -0.2112 -0.2160 -0.2462 70 

      

1.3638 0.4662 -0.2199 -0.2315 -0.2200 71 

1.3085 0.5009 -0.1871 -0.2208 -0.2340 72 

1.2476 0.6735 -0.1888 -0.1882 -0.2214 73 

1.1051 0.4888 -0.2081 -0.2555 -0.2307 74 

1.0430 0.4569 -0.2083 -0.2326 -0.2410 75 

1.6236 0.6246 -0.2143 -0.2207 -0.1836 76 

1.0371 0.5389 -0.2205 -0.2245 -0.2539 77 

1.0170 0.6192 -0.1677 -0.1809 -0.2544 78 

1.3311 0.3339 -0.2571 -0.2614 -0.2656 79 

1.0944 0.5226 -0.1883 -0.2292 -0.2287 80 

      

1.3739 0.4140 -0.2546 -0.2898 -0.2254 81 

1.3505 0.7240 -0.1202 -0.1460 -0.2290 82 

1.3143 0.9722 -0.1683 -0.2155 -0.1973 83 

0.9325 0.5738 -0.2187 -0.2263 -0.2330 84 

1.4870 0.5123 -0.2160 -0.2420 -0.1889 85 

1.1991 0.5216 -0.1904 -0.1883 -0.2488 86 

1.0335 0.5332 -0.2022 -0.2452 -0.1976 87 

1.2531 0.6464 -0.1978 -0.2222 -0.2061 88 

1.0302 0.4994 -0.2266 -0.2338 -0.2442 89 

1.0745 0.5597 -0.1812 -0.2268 -0.2369 90 

      

1.3182 0.5089 -0.2126 -0.2108 -0.2332 91 

0.9782 0.6230 -0.2716 -0.2867 -0.2142 92 

1.3597 0.6236 -0.1754 -0.1894 -0.2320 93 

1.1414 0.5309 -0.2140 -0.2540 -0.2275 94 

1.5399 0.4669 -0.2341 -0.2229 -0.2064 95 

1.2067 0.5228 -0.1605 -0.1955 -0.2395 96 

1.1417 0.6380 -0.1706 -0.2298 -0.2445 97 

1.0886 0.5110 -0.2283 -0.2173 -0.2513 98 

1.2741 0.3310 -0.2382 -0.2628 -0.2473 99 

1.2935 0.7995 -0.1218 -0.1577 -0.2244 100 

Appendix 

Table A1. Parameter estimates for 100 simulations of a Gaussian process on a sphere.  

(a) Southern cap. (b) Northern cap.   See text for details. 
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(b) Parameter estimates: Northern cap 

V  H  
3  2  1  

 

1.1089 0.5008 -0.2175 -0.2401 -0.2961 1  

1.3066 0.4428 -0.1761 -0.2302 -0.2698 2 

1.2390 0.4061 -0.1866 -0.2491 -0.2958 3 

1.2733 0.4730 -0.1807 -0.2331 -0.2474 4 

1.2451 0.4544 -0.2102 -0.2090 -0.2743 5 

0.9871 0.5516 -0.1923 -0.2399 -0.2485 6 

0.9761 0.4525 -0.2448 -0.2526 -0.2857 7 

1.3274 0.4559 -0.1956 -0.2456 -0.2472 8 

1.1109 0.4474 -0.2378 -0.2394 -0.1943 9 

1.4493 0.5923 -0.1997 -0.1977 -0.2031 10 

      

1.2011 0.5995 -0.1787 -0.2427 -0.2315 11 

1.1874 0.4838 -0.2349 -0.2427 -0.2282 12 

1.2951 0.4434 -0.2207 -0.2532 -0.2684 13 

1.0232 0.4288 -0.2173 -0.2695 -0.2411 14 

1.5538 0.4683 -0.1182 -0.1639 -0.2115 15 

0.8619 0.5774 -0.2976 -0.3166 -0.2079 16 

1.5700 0.4111 -0.1973 -0.2230 -0.2332 17 

1.1420 0.4334 -0.2603 -0.2401 -0.2478 18 

1.2622 0.4365 -0.1852 -0.2137 -0.2481 19 

1.1024 0.5453 -0.1845 -0.2196 -0.2495 20 

      

1.2773 0.6195 -0.2133 -0.2227 -0.2273 21 

1.5094 0.4146 -0.1858 -0.2225 -0.2592 22 

1.6797 0.4861 -0.1831 -0.2338 -0.1913 23 

1.1413 0.4587 -0.2839 -0.2871 -0.2062 24 

1.3123 0.5099 -0.1531 -0.2119 -0.2428 25 

1.4183 0.4389 -0.1937 -0.2048 -0.2635 26 

1.2866 0.4785 -0.1365 -0.1566 -0.2277 27 

1.2494 0.5167 -0.1791 -0.1886 -0.2702 28 

1.1222 0.4522 -0.1920 -0.1943 -0.2821 29 

1.2458 0.5535 -0.2290 -0.2437 -0.2193 30 

      

1.2599 0.5567 -0.1577 -0.1963 -0.2138 31 

0.9712 0.4651 -0.3039 -0.2826 -0.2092 32 

1.2095 0.7779 -0.1375   -0.1616 -0.2065 33 

1.8006 0.4743 -0.1727 -0.2066 -0.2431 34 

1.3557 0.6149 -0.1171 -0.1505 -0.2195 35 

1.0344 0.7291 -0.1625 -0.2017 -0.2487 36 

1.0296 0.8256 -0.1383 -0.1932 -0.2236 37 

1.1464 0.5939 -0.1878 -0.2008 -0.2466 38 

1.3477 0.5614 -0.1395 -0.2115 -0.2506 39 

1.3171 0.4274 -0.2206 -0.2441 -0.2141 40 

      

1.1184 0.4531 -0.2402 -0.2609 -0.2375 41 

1.4260 0.5647 -0.2178 -0.2185 -0.2082 42 

1.3351 0.5415 -0.2043 -0.2044 -0.2246 43 

0.9774 0.4457 -0.2446 -0.2580 -0.2900 44 

1.6377 0.4009 -0.1940 -0.2372 -0.2462 45 

1.4269 0.3572 -0.2319 -0.2734 -0.2292 46 

1.4842 0.5477 -0.1614 -0.1913 -0.2350 47 

1.3048 0.3987 -0.2227 -0.2803 -0.2223 48 

1.0429 0.3554 -0.2340 -0.2437 -0.3054 49 

1.7280 0.7190 -0.1588 -0.1680 -0.1905 50 

 

(b) Parameter estimates: Northern cap 

V  H  
3  2  1  

 

1.4891 0.6106 -0.1434 -0.1709 -0.2073 51 

1.1451 0.4276 -0.1993 -0.2221 -0.2626 52 

1.4859 0.4713 -0.1482 -0.1643 -0.2384 53 

1.0780 0.4426 -0.1841 -0.2035 -0.2609 54 

1.2882 0.3826 -0.1646 -0.2392 -0.2736 55 

1.0544 0.4907 -0.1956 -0.2303 -0.2496 56 

1.0219 0.4902 -0.2249 -0.2369 -0.2273 57 

1.3810 0.5833 -0.1338 -0.1633 -0.2322 58 

0.9193 0.4892 -0.2441 -0.2811 -0.2380 59 

1.2001 0.5111 -0.2368 -0.2421 -0.2334 60 

      

1.4944 0.4402 -0.2084 -0.2255 -0.2476 61 

1.2087 0.6710 -0.2346 -0.2850 -0.1817 62 

1.2720 0.7343 -0.1554 -0.1869 -0.1968 63 

1.2773 0.4282 -0.2119    -0.2394 -0.2477 64 

1.4186 0.5345 -0.1381 -0.1853 -0.2555 65 

1.0581 0.4218 -0.2462 -0.2642 -0.2855 66 

1.0514 0.6753 -0.2453 -0.2526 -0.2084 67 

1.3247 0.4759 -0.2010 -0.2009 -0.2240 68 

1.5953 0.3871 -0.1542 -0.2575 -0.2576 69 

1.3030 0.5148 -0.2139 -0.2448 -0.2389 70 

      

1.4345 0.5654 -0.1655 -0.1963 -0.2510 71 

1.3257 0.4961 -0.2003 -0.2497 -0.1973 72 

1.0982 0.5458 -0.2227 -0.2118 -0.2279 73 

1.2942 0.5804 -0.1953 -0.2308 -0.2006 74 

1.0949 0.4675 -0.2125 -0.2680 -0.2274 75 

1.5988 0.4715 -0.1913 -0.2104 -0.2225 76 

1.1669 0.4818 -0.1522 -0.1812 -0.2266 77 

1.1225 0.6159 -0.2525 -0.2321 -0.2068 78 

1.2820 0.5702 -0.1443 -0.1879 -0.2256 79 

1.0929 0.4349 -0.2519 -0.2578 -0.2571 80 

      

1.3229 0.4767 -0.2090 -0.2259 -0.2344 81 

1.5248 0.4456 -0.2072 -0.2131 -0.2490 82 

1.2982 0.3109 -0.3005 -0.2646 -0.2461 83 

0.9043 0.4527 -0.1953 -0.2196 -0.2739 84 

1.2102 0.7560 -0.1702 -0.2234 -0.2262 85 

1.2475 0.8231 -0.1256 -0.1728 -0.2084 86 

1.1309 0.3480 -0.1849 -0.2388 -0.2496 87 

1.5500 0.4246 -0.1455 -0.1773 -0.2618 88 

1.0503 0.4182 -0.2478 -0.2696 -0.2355 89 

1.0906 0.4985 -0.2134 -0.2579 -0.2348 90 

      

1.1569 0.6423 -0.2062 -0.2089 -0.2143 91 

1.1837 0.4926 -0.1634 -0.2403 -0.2534 92 

1.2329 0.3718 -0.1720 -0.2022 -0.2867 93 

1.0147 0.5628 -0.1409 -0.1852 -0.2794 94 

1.4412 0.4758 -0.2188 -0.2473 -0.2123 95 

1.3269 0.5434 -0.1758 -0.1278 -0.2663 96 

1.1384 0.5582 -0.1941 -0.2529    -0.2490 97 

1.3202 0.4955 -0.1066 -0.1782 -0.2594 98 

1.5291 0.4987 -0.2172 -0.2399 -0.1880 99 

1.0823 0.6120 -0.2091 -0.2154 -0.2208 100 

Replicating statistical topology 28 Adler, Agami, Pranav



Replicating statistical topology 29 Adler, Agami, Pranav

References

[1] H. Adams, S. Chepushtanova, T. Emerson, E. Hanson, M. Kirby, F. Motta, R. Neville,
C. Peterson, P. Shipman, and L. Ziegelmeier. Persistence images: A stable vector
representation of persistent homology. ArXiv e-prints, July 2015.

[2] R.J. Adler, O. Bobrowski, M.S. Borman, E. Subag, and S. Weinberger. Persistent
homology for random fields and complexes. In Borrowing strength: theory powering
applications–a Festschrift for Lawrence D. Brown, pages 124–143. Institute of Mathe-
matical Statistics, 2010.

[3] U. Bauer, M. Kerber, and J. Reininghaus. Clear and compress: Computing persistent
homology in chunks. ArXiv e-prints, March 2013.

[4] Dave Bayer and Persi Diaconis. Trailing the dovetail shuffle to its lair. Ann. Appl.
Probab., 2(2):294–313, 1992.

[5] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical
and powerful approach to multiple testing. Journal of the Royal Statistical Society.
Series B (Methodological), pages 289–300, 1995.

[6] O. Bobrowski and M. Kahle. Topology of random geometric complexes: a survey.
Preprint at http://arxiv. org/abs/1409.4734, 2014.

[7] P. Bubenik. Statistical topological data analysis using persistence landscapes. Journal
of Machine Learning Research, 16(1):77–102, 2015.

[8] G. Carlsson. Topology and data. Bull. Amer. Math. Soc. (N.S.), 46(2):255–308, 2009.

[9] G. Carlsson. Topological pattern recognition for point cloud data. Acta Numer.,
23:289–368, 2014.

[10] G. Carlsson and V. de Silva. Plex: MATLAB software for computing persistent
homology of finite simplicial complexes. comptop.stanford.edu/programs/∼plex.

[11] B. Chalmond. Modeling and Inverse Problems in Imaging Analysis, volume 155 of
Applied Mathematical Sciences. Springer-Verlag, New York, 2003. Translated from
the French, With a foreword by Henri Maître.

[12] F. Chazal, B. T. Fasy, F. Lecci, B. Michel, A. Rinaldo, and L. Wasserman. Robust
topological inference: Distance to a measure and kernel distance. ArXiv e-prints,
December 2014.

[13] Y.-C. Chen, D. Wang, A. Rinaldo, and L. Wasserman. Statistical analysis of persis-
tence intensity functions. ArXiv e-prints, October 2015.

[14] J-F. Coeurjolly and R. Drouilhe. Asymptotic properties of the maximum pseudo-
likelihood estimator for stationary Gibbs point processes including the Lennard-Jones
model. Electron. J. Statist., 4:677–706, 2010.

[15] H. Edelsbrunner. A Short Course in Computational Geometry and Topology. Springer
Briefs in Applied Sciences and Technology. Springer, Cham, 2014.



Replicating statistical topology 30 Adler, Agami, Pranav

[16] H. Edelsbrunner and J. Harer. Persistent homology—a survey. In Surveys on discrete
and computational geometry, volume 453 of Contemp. Math., pages 257–282. Amer.
Math. Soc., Providence, RI, 2008.

[17] H. Edelsbrunner and J.L. Harer. Computational Topology. American Mathematical
Society, Providence, RI, 2010. An introduction.

[18] H. Edelsbrunner, A. Ivanov, and R. Karasev. Current open problems in discrete and
computational geometry. Modelirovanie i Analiz Informats. Sistem, 19:5–17, 2012.

[19] H. K. Eriksen, F. K. Hansen, A. J. Banday, K. M. Gorski, and P. B. Lilje. Asymmetries
in the cosmic microwave background anisotropy field. The Astrophysical Journal,
605(1):14–20, 2004.

[20] B.T. Fasy, F. Lecci, A. Rinaldo, L. Wasserman, S. Balakrishnan, and A. Singh. Con-
fidence sets for persistence diagrams. Ann. Statist., 42(6):2301–2339, 2014.

[21] R. Ghrist. Elementary Applied Topology. Createspace, 2014.

[22] K. M. Górski, E. Hivon, A. J. Banday, B. D. Wandelt, F. K. Hansen, M. Reinecke,
and M. Bartelmann. HEALPix: A Framework for High-Resolution Discretization and
Fast Analysis of Data Distributed on the Sphere. Astrophysical Journal, 622:759–771,
April 2005.

[23] J. R. Gott, III, M. Dickinson, and A. L. Melott. The sponge-like topology of large-scale
structure in the universe. Astrophysical Journal, 306:341–357, July 1986.

[24] A. Hatcher. Algebraic Topology. Cambridge University Press, Cambridge, 2002.

[25] M. Kahle. Topology of random simplicial complexes: a survey. In Algebraic topology:
applications and new directions, volume 620 of Contemp. Math., pages 201–221. Amer.
Math. Soc., Providence, RI, 2014.

[26] S. Kalisnik-Verovsek. Tropical coordinates on the space of persistence barcodes. ArXiv
e-prints, March 2016.

[27] G. Kusano, K. Fukumizu, and Y. Hiraoka. Kernel method for persistence diagrams
via kernel embedding and weight factor. ArXiv e-prints, June 2017.

[28] D. Marinucci and G. Peccati. Random Fields on the Sphere, volume 389 of London
Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge,
2011. Representation, limit theorems and cosmological applications.

[29] Y. Mileyko, S. Mukherjee, and J. Harer. Probability measures on the space of persis-
tence diagrams. Inverse Problems, 27(12):124007, 22, 2011.

[30] E. Munch, K. Turner, P. Bendich, S. Mukherjee, J. Mattingly, and J. Harer. Prob-
abilistic Fréchet means for time varying persistence diagrams. Electron. J. Stat.,
9(1):1173–1204, 2015.

[31] S.Y. Oudot. Persistence Theory: From Quiver Representations to Data Analysis, vol-
ume 209 of Mathematical Surveys and Monographs. American Mathematical Society,
Providence, RI, 2015.



Replicating statistical topology 31 Adler, Agami, Pranav

[32] Chan-Gyung Park. Non-Gaussian signatures in the temperature fluctuation observed
by the Wilkinson Microwave Anisotropy Probe. Monthly Notices of the Royal Astro-
nomical Society, 349(1):313–320, 2004.

[33] Planck Collaboration, R. Adam, P. A. R. Ade, N. Aghanim, M. Arnaud, M. Ashdown,
J. Aumont, C. Baccigalupi, A. J. Banday, R. B. Barreiro, and et al. Planck 2015 re-
sults. IX. Diffuse component separation: CMB maps. Astron. & Astrophysics, 594:A9,
September 2016.

[34] Planck Collaboration, P. A. R. Ade, N. Aghanim, C. Armitage-Caplan, M. Arnaud,
M. Ashdown, F. Atrio-Barandela, J. Aumont, C. Baccigalupi, A. J. Banday, and et al.
Planck 2013 results. xxiii. isotropy and statistics of the cmb. ArXiv e-prints, March
2013.

[35] P. Pranav, R.J. Adler, H. Edelsbrunner, H. Wagner, T. Buchert, A. Schwartzman,
B.J.T. Jones, and R. van de Weygaert. Loops abound in the cosmic microwave back-
ground. 2017. In preparation.

[36] P. Pranav, H. Edelsbrunner, R. van de Weygaert, G. Vegter, M. Kerber, B. J. T.
Jones, and M. Wintraecken. The topology of the cosmic web in terms of persistent
Betti numbers. Monthly Notices of the Royal Astronomical Society, 465:4281–4310,
March 2017.

[37] J. Reininghaus, S. Huber, U. Bauer, and R. Kwitt. A stable multi-scale kernel for
topological machine learning. In Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR), pages 4741–4748, 2015.

[38] J. E. Rhoads, J. R. Gott, III, and M. Postman. The genus curve of the Abell clusters.
Astrophysical Journal, 421:1–8, January 1994.

[39] V. Robins and K. Turner. Principal component analysis of persistent homology rank
functions with case studies of spatial point patterns, sphere packing and colloids.
Physica D Nonlinear Phenomena, 334:99–117, November 2016.

[40] A. Robinson and K. Turner. Hypothesis testing for topological data analysis. ArXiv
e-prints, October 2013.

[41] R. K. Sachs and A. M. Wolfe. Perturbations of a cosmological model and angular
variations of the microwave background. Astrophysical Journal, 147:73, January 1967.

[42] K. Turner, Y. Mileyko, S. Mukherjee, and J. Harer. Fréchet means for distributions
of persistence diagrams. Discrete Comput. Geom., 52(1):44–70, 2014.

[43] L. Wasserman. Topological data analysis. Annual Reviews in Statistics, 5, 2018.

[44] A.J. Zomorodian. Topology for Computing, volume 16 of Cambridge Monographs on
Applied and Computational Mathematics. Cambridge University Press, Cambridge,
2005.


