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Under the banner of “big data,” the detection and classification
of structure in extremely large, high-dimensional, data sets are
two of the central statistical challenges of our times. Among the
most intriguing new approaches to this challenge is “TDA,” or
“topological data analysis,” one of the primary aims of which is
providing nonmetric, but topologically informative, preanalyses
of data which make later, more quantitative, analyses feasible.
While TDA rests on strong mathematical foundations from topol-
ogy, in applications, it has faced challenges due to difficulties in
handling issues of statistical reliability and robustness, often lead-
ing to an inability to make scientific claims with verifiable lev-
els of statistical confidence. We propose a methodology for the
parametric representation, estimation, and replication of persis-
tence diagrams, the main diagnostic tool of TDA. The power of
the methodology lies in the fact that even if only one persis-
tence diagram is available for analysis—the typical case for big
data applications—the replications permit conventional statisti-
cal hypothesis testing. The methodology is conceptually simple
and computationally practical, and provides a broadly effective
statistical framework for persistence diagram TDA analysis. We
demonstrate the basic ideas on a toy example, and the power of
the parametric approach to TDA modeling in an analysis of cosmic
microwave background (CMB) nonhomogeneity.

persistence diagrams | Gibbs measures | topological data analysis |
statistical topology | CMB nonhomogeneity

As a consequence of the current explosion in size, complex-
ity, and dimensionality of data sets, there has been a grow-

ing need for the development of powerful but concise summary
statistics and visualization methods that facilitate understand-
ing and decision-making. A singularly novel approach, which
has been particularly promising in areas as widespread as biol-
ogy and medicine (1–3), neurophysiology, (4), cosmology (5, 6),
and materials science (7), has been via the application of the
powerful, and rather abstract, concepts of algebraic topology to
develop what generally now falls under the label of “topological
data analysis” (TDA). While approaching complex data from a
topological viewpoint is not entirely new—it underlies Tukey’s
“Exploratory data analysis” of the 1960s (8) and the more recent
approach by Friston and coworkers to brain imaging data (9)—
TDA differs from all its forebears in its sophisticated exploita-
tion of recent developments in computational topology. In par-
ticular, much of TDA has become almost synonymous with an
analysis based on some version of persistent homology (10–12),
represented visually as barcodes, persistence diagrams (PDs), or
related representations (13–17).

With relatively few exceptions, notably refs. 17–22 (see addi-
tional citations in SI Appendix, Homology and Persistent Homol-
ogy) TDA has not used statistical methodology as part of its
approach, and, as a consequence, has typically been unable to
associate clearly defined levels of statistical significance to its
discoveries. While there may be a variety of reasons for this,
one of the main obstacles to doing so is that the mathemati-
cal challenges involved in computing the statistical distributions
of topological quantifiers have so far proven to be intractable.
This is despite the fact that the measure-theoretic issues involved

in defining probability measures which support notions such as
expectations, variances, percentiles, and conditional probabili-
ties have been effectively solved, for example, refs. 23–25.

One approach adopted by refs. 18–20 and others to circum-
vent these difficulties has been to reduce persistence diagrams to
a single test statistic, often related to bottleneck norms, and then
to adopt standard statistical resampling methods to analyze this
statistic. If multiple diagrams are available, then the resampling
can be done on them. However, since TDA is typically used in
areas of very large data sets, the availability of replicates is rare,
and consequently this approach is impracticable in most appli-
cations. An alternative approach is to (sub)sample points from
the persistence diagram, and compute statistics on the subsam-
ples. The problem with this approach, however, is that the true
random object here is the full persistence diagram, and thus it is
often unclear what is the precise meaning of the statistics pro-
duced this way.

We introduce an approach, based on generating a sequence
of persistence diagrams which has similar statistical properties
to those of the one generated by the data. The individual con-
cepts underlying the method are not difficult, and follow a num-
ber of clearly defined stages. First, a parametric model is adopted
that is sufficiently flexible to model an extremely wide class of
persistence diagrams. The model we use is a class of Gibbs dis-
tributions, since these have a long history of success in model-
ing point sets (ref. 26 and its bibliography), which, essentially,
is what a persistence diagram is. Having estimated parameters,
we then exploit the fact that Gibbs distributions lend themselves
to simulation by Markov chain Monte Carlo (MCMC) methods,
and apply MCMC to produce a simulated sequence of diagrams.

Significance

Under the general heading of “topological data analysis”
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analysis of large, complex, and high-dimensional data sets has
established that the abstract concepts of algebraic topology
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the successes of TDA, most applications have lacked formal
statistical veracity, primarily due to difficulties in deriving
distributional information about topological descriptors. We
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Since the underlying raison d’être of this approach is that persis-
tence diagrams provide an excellent summary of topology, and
statistics computed off the diagrams themselves furnish even
more succinct summaries, we call this procedure “replicating
statistical topology” (RST), and its introduction and descrip-
tions of its implementation are the main contributions of the
paper. We believe that these ideas, integrated with the exist-
ing techniques of TDA, provide another significant contribu-
tion toward putting TDA on a more solid statistical footing. To
support this, we treat one toy example, showing that the tech-
nique works as predicted, and then study the fascinating and
important topic of nonhomogeneities in the cosmic microwave
background (CMB) radiation via parameter estimation of our
Gibbs model.

TDA and Persistence Diagrams
As homology is an algebraic method for describing topological
features of shapes and functions, so persistent homology is an
extension of this method for both enriching these descriptions
and for describing how topology undergoes changes. We shall
use it to describe the upper-level sets of real-valued functions f
defined over a space X , namely, sets of the form Au = {x ∈ X :
f (x ) ≥ u}. In basic homology, the topology of each Au is often
summarized by its Betti numbers, βk , k = 0, . . . dim(X ). The first
of these, β0, counts the number of connected components in Au ,
and, roughly speaking, the remaining βk count the number of
(k + 1)-dimensional “holes” in Au . Persistent homology goes
farther, and keeps track of how homological features, including
quantifiers such as the Betti numbers, persist and occasionally
change as the level u drops, giving a richer, more dynamic view
of topology. A very brief description of the underlying principles
of persistent homology, with pointers to the literature, is given in
SI Appendix.

Persistent homology is undeniably the most popular tool in the
burgeoning area of TDA, one of the main reasons for which is
the fact that it is easily visualized via barcode diagrams. Con-
tinuing with the upper-level set example of the previous para-
graph, and starting with u = +∞ and then descending, each bar
in such a diagram is an interval that starts (is “born” at) a level
u = b, at which a new aspect of the homology of Au appears,
and ends (“dies” at) a lower level u = d < b, as this aspect dis-
appears. A mathematically equivalent, but visually distinct, rep-
resentation of barcodes is as PDs of the points (b, d). We shall
assume that the reader has some familiarity with these concepts,
but we now look at an instructive, and easy, example in Fig. 1,
needed later.

In Fig. 1, Left, we see a sample x̃N = {x1, . . . , xN } of N = 800
points from two circles, of diameters 4 and 2. A random sam-
ple of 500 points were chosen at random from the larger cir-
cle, and 300 were chosen from the smaller one. In Fig. 1,
Middle, we see the corresponding kernel density estimate, de-
fined by

Fig. 1. A random sample from two circles: 500 points from the larger circle
and 300 from the smaller one (Left) with a kernel density estimate (Middle)
and the PD for its upper-level sets (Right). Black circles in the PD are H0

persistence points, and red triangles are H1 points. Birth times are on the
vertical axis.

f̂N (p) =
1

N

N∑
i=1

1

2πh2
e−‖p−xi‖2/2h2

, [1]

where h > 0 is a bandwidth parameter (h = 0.1 for Fig. 1). In
Fig. 1, Right, we have the corresponding PD of the upper-level
set filtration of f̂N , with the black circles indicating H0 (zeroth
homology) persistence and the red triangles corresponding to
H1, in both cases trying to capture the underlying homology of
the two circles. As described above, each point in the diagram
is a birth–death pair (b, d). The accepted paradigm of TDA, in
examples of this type, is that points in the PD far away from the
diagonal b = d are meaningful, while points close to the diago-
nal, which represent short-lived topological phenomena, are not.
Thus, since we know that the upper-level sets of f̂N are charac-
terized by having two main components, each of which contains
a single one-cycle (hole), we expect to see two black circles and
two red triangles somewhat isolated from the other points in the
diagram. This is, in fact, the case.

While the PD in Fig. 1 performs as expected, and it is easy to
identify the points that, a priori, we knew had to be there, there
are many other points in the diagrams. Were we not in the situa-
tion of knowing ahead of time which points were “really” signifi-
cant, it would not have been clear how to discount the additional
points. We will treat this issue in Example 1: Two Circles.

There is another class of problems, in which the general struc-
ture of the PD, including points near the diagonal, is of more
importance than the behavior of a handful of outliers. These are
typically problems in which the topology is complex, and occurs
at a number of different scales. Examples include tree-structured
data objects such as brain artery trees (27), and a variety of cos-
mological structures (5, 6), including the CMB that we treat in
Example 2: CMB Nonhomogeneity.

First, however, we must describe the general approach.

Gibbs Measures for Persistence Diagrams

Given a finite collection X̃N = {X1, . . .,XN } of continuous ran-
dom variables, with joint probability density ϕΘ(x̃N ), dependent
on a multidimensional parameter Θ, we say that ϕΘ is a Gibbs
distribution if it is written in the form

ϕΘ(x̃N ) =
1

ZΘ
exp(−HΘ(x̃N )), [2]

where the “Hamiltonian” HΘ : RN → R describes the “energy”
of configurations x̃N . Throughout the paper, we treat N as fixed,
although a richer, more realistic model for PDs would treat it
as random. The reasons for, and consequences of, this are dis-
cussed in SI Appendix, Probability Models for Persistent Diagrams.
The normalization ZΘ, actually a function of Θ, is known as
the partition function, and is infamously hard to evaluate. All
this is standard fare (28). However, we shall use Gibbs distribu-
tions to provide a model for PDs that look like those in Fig. 1.
(There is another important family of PDs that arise from the
construction of simplicial complexes over point sets, and these,
at least for their H0 diagrams, have all points with birth times
identically zero. These are much easier to analyze, since they are
effectively one-dimensional, and we shall treat them in a separate
publication.)

As in all applications of Gibbs distributions, success depends
on an appropriate choice for the energy function. Here is a way
to do it for x̃N , a set of N points in a subset X of R2. First, for
x ∈X and for k ≥ 1, let xnn(k)∈X be the k th-nearest neighbor
to x , and set

Lδ,k (x̃N ) =
∑
x∈x̃N

‖x − xnn(k)‖1{‖x−xnn (k)‖≤δ}.
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Restricting ourselves, for reasons to become clear soon, to
X =R×R+, define, for x = (x (1), x (2)) ∈ X ,

σ2
H =

∑
x∈x̃N

(
x (1) − x̄ (1)

)2

, σ2
V =

∑
x∈x̃N

(
x (2)

)2

,

where x̄ (1) = N−1∑N
i=1 x

(1)
i .

We now define a Hamiltonian, at effective interaction distance
δ, up to cluster size K ≥ 0, and, with interaction parameter Θ =
(θH , θV , θ1, . . ., θK ), as

HK
δ,Θ(x̃N ) = θHσ

2
H + θV σ

2
V +

K∑
k=1

δ−2θkLδ,k (x̃N ). [3]

The parameters here all have clear meanings. The horizontal
spread about the mean of the points is controlled by σ2

H , and the
vertical spread is controlled by σ2

V [not centered because of the
assumed nonnegativeness of the components x (2)]. Each θk is a
measure of energy density, controlling the probability of clusters
of size k+1, with θk < 0 favoring such clusters, and θk > 0 lower-
ing their probabilities. As noted in SI Appendix, Probability Mod-
els for Persistent Diagrams, working with energy densities rather
than absolute energies (i.e., without the δ−2 factor in Eq. 3) leads
to more-robust numerical procedures.

Now, given a PD B̃ = {(bi , di)}Ni=1, define a new set of N

points x̃N = {xi}Ni=1, with x
(1)
i = di and x

(2)
i = bi − di . This

(invertible) transformation has the effect of moving the points in
Fig. 1 downward, so that the diagonal line projects onto the hor-
izontal axis, but still leaves a visually informative diagram, which
we shall call the projected PD (PPD). The statistical model we
take for PPDs is a Gibbs distribution Eq. 2 with Hamiltonian
Eq. 3.

While this may seem a rather arbitrary form for the distribu-
tion of a PPD, there are a number of facts justifying it. The first
is the trivial observation that any multivariate distribution can
be written in the form of Eq. 2, simply by taking HΘ≡− ln(ϕΘ)
and ZΘ = 1. Moreover, “cluster expansions” of this form have
been successfully used in statistical mechanics for the best part
of a century as a basic approximation tool in the study of particle
systems. More specifically, for the model to be rich enough for
TDA, we need to choose the Hamiltonian from a parameterized
family that comes close to spanning all “reasonable” functions on
PPDs. However, we know from ref. 29 that the ring of algebraic
functions on the space of PPDs is spanned by a family of mono-
mials closely related to functions of the form of Eq. 3. Finally,
there is the issue, discussed in detail in SI Appendix, Probability
Models for Persistent Diagrams, that we will often use these dis-
tributions not as exact models for PPDs but rather as a tool in a
perturbative analysis. In these cases, the convenience of the mod-
els is more important than whether or not they provide a perfect
fit to PPD data.

The determination of δ depends on the number and spread of
the points in the PD. In practice, theoretical results (compare the
reviews in refs. 30 and 31) suggest taking δ of the form

δ =
δ∗

Nαk,d
max

(
max |x (1)

i − x
(1)
j |, max |x (2)

i − x
(2)
j |
)
, [4]

where α0,d = 1/d , αk,d = k/(k + 1)d for k ≥ 1, d is the dimen-
sion of the data underlying the PD, and δ∗ is a data-independent
tuning parameter. The terms inside the brackets in Eq. 4 scale for
the order of magnitude of the data, which is unimportant topo-
logically. (For cases for which d is unknown, setting d = 2 seems
to work in practice, merely leading to larger than usual values of
δ∗, as does ignoring the fine structure of αk,d and taking it to be
N−1/2, as a global default.)

Pseudolikelihood. Given HΘ as a parametric model, we now
turn to the estimation problem. Unfortunately, estimation of the

parameters by a method such as direct maximum likelihood is
precluded by the fact that we don’t have an analytic form for ZΘ,
nor is there any way to compute it numerically in any reasonable
time frame.

The standard way around this problem, which we adopt, is the
pseudolikelihood approach (32, 33). This originated in the con-
text of point cloud data with spatial dependence, which is, essen-
tially, a description of a PD. In particular, it exploits the inher-
ent spatial Markovianness of a Gibbs distribution to replace the
overall probability of, in our case, a random PPD X̃N by the pseu-
dolikelihood

LK
δ,Θ(x̃N )

∆
=
∏

x∈x̃N

fΘ
(
x
∣∣Nδ,K (x )

)
, [5]

where Nδ,K (x ) denotes the points among the K nearest neigh-
bors of x in x̃N which are of distance no greater than δ from x . If
no such points exist, then we takeNδ,K (x ) = ∅. The conditional,
local densities fΘ

(
x
∣∣Nδ,K (x )

)
are given by

exp
(
−HK

δ,Θ

(
x
∣∣Nδ,K (x )

))∫
R

∫
R+

exp
(
−HK

δ,Θ

(
z
∣∣Nδ,K (x )

))
dz (1)dz (2)

, [6]

and the conditional Hamiltonians HK
δ,Θ

(
x
∣∣Nδ,K (x )

)
by

θH
[
x (1) − x̄ (1)]2 + θV (x (2))

2
+

K∑
k=1

δ−2θkLδ,k (Nδ,K (x )) .

Model Specification and Parameter Estimation. While it might
be expected that PPDs originating from different physical phe-
nomena might require quite different models, we have found,
in all of the examples that we tried, that taking K = 2 or 3 in
Eq. 3—so that the largest cluster size was 3 or 4—was both effi-
cient and sufficient. If a lower K was appropriate, then the esti-
mation procedure described above estimated the higher-order
parameters θk as close to zero. In this case, using standard,
automated statistical procedures such as AIC, BIC, etc. (cf.
ref. 34), we often deleted the corresponding clusters from the
Hamiltonian. Overall, we found the procedure not to be sensi-
tive to either these small parameters or the specific procedure
adopted for deleting them. After considerable experimentation,
we found that working with all parameters appearing when
K = 3, regardless of their absolute value, was the easiest thing
to do. We also found that taking K > 3 did little to improve
the simulation procedure, and typically led to manifestations
of overfitting. In SI Appendix, Probability Models for Persistent
Diagrams, we describe some of this experimentation, giving
examples of when these models are, and are not, successful in
fitting PDs.

RST and MCMC
We refer the reader to refs. 35 and 36 for technical background
to this section, in which we describe a standard Metropolis–
Hastings MCMC approach to replicating PDs. In particular,
see ref. 35, section 10.3.3, in which the particular approach we
take is called “Metropolis-within-Gibbs” and its properties are
discussed.

Given a pseudolikelihood as in Pseudolikelihood (with known
or estimated parameters), generating simulated replications of
the associated point set via MCMC is not hard, but first we need
some definitions.

First, given a x̃N , define a “proposal distribution” q(·|x̃N ) as
the bivariate Gaussian density, with mean vector and covari-
ance matrix identical to the empirical mean and covariance of
the points in x̃N , but restricted to R×R+. Next, for two points
x , x∗ ∈ R×R+, define an “acceptance probability,” according to
which we will replace x ∈ x̃N by x∗, leading to the updated PPD
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x̃∗N , as

ρ (x , x∗) = min

{
1,

fΘ (x∗|Nδ,K (x )) · q(x |x̃∗N )

fΘ (x |Nδ,K (x )) · q(x∗|x̃N )

}
.

[Note that integration in the denominator of fΘ in Eq. 6 depends
on x only through its neighborhood, and so cancellation in
the ratio means that it does not enter into the computation of
ρ (x , x∗). This makes MCMC for pseudolikelihoods much more
computationally feasible than for full likelihood models.]

The basic step of the algorithm, which describes the update of
the point set x̃N = (x1, . . ., xN ), is then Algorithm 1.

Algorithm 1. MCMC step updating diagram for x̃N

1: k = 0
2: k← k + 1
3: Choose x∗ according to q(·|x̃N)
4: Compute ρ(xk, x∗)
5: Choose U a standard uniform variable on [0, 1]
6: if U < ρ(xk, x∗), then set xk = x∗

7: if k < N then go to Step 2

To obtain N approximately independent PPDs, we adopt a
procedure dependent on parameters nb , nr , and nR: Starting
with the original PPD, run Algorithm 1 for a burn-in period.
Then, starting with the final PPD from the burn-in, run the algo-
rithm a further nb times, choosing the last output of this block of
nb iterations as the first simulated PPD. Repeat nr times, each
time starting with the most recently simulated PPD, namely, the
output of the previous block. Finally, replicate the entire proce-
dure nR times, for a total of n = nr × nR simulated PPDs. The
optimal choice of nb , nr , and nR typically depends on the specific
problem, and the behavior of the Markov chain being simulated.
See SI Appendix, Probability Models for Persistent Diagrams for
details and practical guidelines for choosing these parameters.

Given the collection of n simulated PPDs, we convert each
PPD back to a regular PD with the mapping x→ (x (1) + x (2),

x (1)) = (b, d) of its component points, and write S(B̃) = {B̂1, . . .,

B̂n} for the resulting collection of simulated PDs generated from
B̃ . These form the first-level output of the RST procedure.

The higher levels are driven by the specific application, but
the basic idea is to compute simpler, real, vector, or function-
valued statistics off the simulated PDs, and take their empirical
distribution as an estimate of the true, underlying distribution of
the statistic. The same statistic, computed off the original PD,
can then be tested for statistical significance against this empir-
ical distribution in standard fashion. Diagrammatically, treating
persistence-based TDA as a sequence of three steps,

physical phenomenon→ PD→ analysis,

RST comes in at the second stage, providing additional informa-
tion on the variation of PDs to feed into the analyst’s preferred
method. This is best described by example.

Examples
We treat two examples. One is a toy problem, for which the true
situation is known, to see how and if RST works. The second
studies the topology of CMB, and the analysis required is far
more subtle. Details of both are given in SI Appendix. For both
cases, we emphasize the point implied in the preceding para-
graph, that our main interest is in the replication of the PDs, and
not the particular method of statistical analysis following that.

Example 1: Two Circles. As a simple (but representative) test
case, take a random sample from two circles, as in Fig. 1. Note
that, while there are many points corresponding to the H0 homol-

ogy, there are only three for H1. Furthermore, the H1 points are
all closer to the diagonal boundary, and less prominent. [These
are common phenomena for barcodes, addressed theoretically
in a number of studies (e.g., ref. 37).] Consequently, the RST
procedure will not work for H1 in this example. However, we do
not know of, nor can imagine, any statistical procedure that can
reach a meaningful conclusion based on so few points. (The pro-
cedures such as those described in refs. 18 and 19 require some
form of replication, usually via a bootstrapping approach, of the
original data set. This is precisely what we are trying to avoid.)
On the other hand, a homology which has, at most, three gen-
erators is small enough to be investigated ad hoc, and statistical
procedures are hardly needed.

However, there are certainly enough H0 points in Fig. 1 to fit
a spatial model. Before we do this, note that there are two points
(at the top left) that we know to be significant, since we know, a
priori, that the data come from points on two circles. However,
there are a number of other points far away from the diagonal,
and, were we ignorant of the true situation, it would not be clear
whether they were significant or not.

Adopting the approach of RST, we estimated the parameters
for a Gibbs distribution for the model with pseudolikelihood Eq.
5 for the H0 data, taking K = 3. For three different scenarios,
we generated 1,000 simulated PDs from this model, each with a
burn-in period of 1,000 iterations, with (nb ,nr ,nR) given by (500,
20, 50), (500, 40, 25), or (500, 100, 10).

Using these three sets of simulations, we computed a number
of statistics, but report on only one set here: the order statis-
tics of the distances of the points in the PD to the diagonal.
Given the points (bi , di) of the PD, these are Tj , the j th largest
among the differences |di − bi |,j = 1, . . .,N . Empirical distribu-
tions of the order statistics are then trivial to derive from the
simulations of the PDs, and the order statistics calculated off
the original PD can be compared with these. The results, for
all three scenarios, showed that T1 and T2 were highly signif-
icant (the largest P value reached in any of the six cases was
0.003). The P values for T3 were all in the range (0.036, 0.041),
and so T3 was marginally significant at the standard 5% level.
In none of the three scenarios was T4 significant. Details of
the analysis and the results are given in SI Appendix, Proba-
bility Models for Persistent Diagrams. These include a compari-
son with the bootstrap, confidence interval-based techniques of
ref. 18. Using the same kernel bandwidth for the density esti-
mate Eq. 1 that we used, these techniques identified only one
point in each of the H0 and H1 diagrams as significant, indi-
cating an underlying set topologically equivalent to a single cir-
cle, but missing the second circle. A similar analysis, using the
related techniques in ref. 19, identified one H0 point but no H1

points at all. Adopting a different bandwidth, however, iden-
tified two points in each diagram, when using the methods of
ref. 18.

In summary, blindly applying RST to simulate PDs, and taking
the simplest of all statistics, showed (correctly) strong statistical
evidence for two connected components in the topological space
(two circles) which generated the PD, with borderline (but mis-
leading) evidence for a third component. Despite the fact that
the PD has a number of points far from the diagonal, and quite
close to the third-farthest point (Fig. 1), these were (correctly)
considered statistically insignificant. Thus, in this toy example,
with the simplest of statistical quantifiers, RST competes favor-
ably with existing methodologies.

Example 2: CMB Nonhomogeneity. Current cosmological the-
ory describes a phase of rapid inflation in the primordial uni-
verse roughly 10−35 s after its birth. Spontaneous quantum
fluctuations in what was then a high-energy, uniform, pseu-
dovacuum universe resulted in minute perturbations in its den-
sity field. Eventually, aided by gravitational amplification, these
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fluctuations led to the complicated, inhomogeneous structure of
the cosmic web of planets, stars, galaxies, etc., which make up
today’s universe.

The CMB is the thermal radiation, generated as the universe
cooled, some 300,000 years after the hypothesized Big Bang.
Amazingly, it is measurable still today, and, since the tempera-
ture fluctuations in the observable CMB follow the pattern of
the quantum perturbations from the inflationary era, it enables
the mapping of the fluctuations in the distribution of matter in
the early universe.

CMB data are directional, measuring fluctuations in radia-
tion coming into a satellite from different directions. The first,
satellite-based, detailed measurement of the CMB was carried
out by the Cosmic Background Explorer (COBE) probe in the
early 1990s, followed a decade later by the Wilkinson Microwave
Anisotropy Probe experiment. Most recently, the high-precision
Planck mission measured temperature anisotropies of the CMB
to an accuracy of 10−5 degrees. They are measured at seven dif-
ferent frequency bands, and a resolution of 5’ (5 arc minutes,
or 5/60 of a degree), representing the most detailed and pre-
cise measurement of the CMB temperature anisotropies till date.
Common to all of these, however, is that each CMB measure-
ment is that of a function on a sphere, as in Fig. 2.

There are many mathematical models for CMB, the most com-
mon being a homogeneous, isotropic Gaussian random field (38–
42). Both assumptions of Gaussianity and homogeneity have
been challenged recently, from both theoretical and empirical
viewpoints (43, 44), and it is homogeneity that we now address,
parametrically, using our Gibbs model. (Non-Gaussianity has
been addressed, geometrically, in refs. 45 and 46.)

To test homogeneity, we first cut out a ring around the equator
of±30◦, leaving “northern” and “southern” 60◦ spherical caps of
data. The reason behind ignoring the central ring is that much
of the data here are not from actual observations, which are
unavailable due to confounding effects such as the Milky Way,
but are “reconstructions” using one of a variety of techniques
(47). Since all of these techniques are based on both Gaussian
and homogeneity assumptions, the central ring should not show
any deviation from the assumptions. Our aim is to test whether or
not the CMBs in the two caps can be assumed to be realizations
of the same stochastic process.

The next step is to generate five smoothed versions of the
CMB in each cap, which we do with five different Gaussian ker-
nels, with full width at half maximum 300’, 180’, 120’, 90’, and
60’. The highest level of smoothing (300’) suppresses most of the
fine-scale variation seen in Fig. 2, while the 60’ level leads to no
visually distinguishable difference. For each such smoothing, we
produce PDs generated by the upper-level set filtration, for both
H0 and H1, leading to a total of 20 = 5 × 2 × 2 PDs. Although

Fig. 2. A reconstructed version of CMB data from the Planck experi-
ment, created using the Commander rule technique, seen in 2D Mollweide
projection.

Fig. 3. H1 PDs for unsmoothed CMB data, northern cap (Left) and south-
ern cap (Right). There are approximately 27,000 points in each diagram. As
usual, the vertical axis gives birth points, and the horizontal axis gives death
points.

the aims there are different, details of the numerical procedure
can be found in ref. 6, and an example of two PDs is given in
Fig. 3.

The two PDs of Fig. 3 are quite similar, and, apart from a
handful of outliers, it is hard to see any consistent differences
between them. However, fitting a Gibbs model with pseudo-
likelihood Eq. 5, again taking K = 3, to each of the 20 PDs
yields some interesting results, summarized in Table 1. Each
such model involves five free parameters (we treat δ as a nui-
sance parameter only), and Table 1 gives the number of such
parameters that, for each smoothing, and for each PD (H0 or
H1), were found to be significantly different between the mod-
els for the northern and southern caps at a 5% significance
level. Two different significance tests were used. Test 1 esti-
mated the variance of the parameter estimates via empirical
Fisher information, while Test 2 used external estimates of these
variances based on simulations. Details are given in SI Appen-
dix, Example 2 - Analyzing CMB Data. For reasons described
there, we have more faith in the second, more conservative, of
these tests.

The results provide statistical confirmation for differences
between northern and southern PDs, with the most significant
differences at the intermediate smoothing levels. (This is clear-
est from the P values associated with the test results, given
in SI Appendix, Tables S2 and S3.) While we do not have a
definitive physical explanation for this, it is most likely due to
the effect of interactions between objects that evolved due to
the true primordial CMB fluctuations and foreground phenom-
ena that evolved at later epochs. However, whatever the cos-
mological reason underlying Table 1, the implication is that
it is unreasonable to blandly assume that the northern and
southern cap CMB maps are realizations of the same stochas-
tic process. In other words, a hypothesis of homogeneity is
questionable.

From the point of view of this paper, however, our main dis-
covery is not cosmological but lies in demonstrating the ability of
the Gibbs model, which assumes nothing about the original data
nor about how PDs express properties of the underlying data, to
differentiate between complex structures using purely topological
methods. Consequently, we believe that the approach described

Table 1. Number of north–south CMB parameter differences for
two tests, five levels of smoothing, and both homologies

Level of smoothing

Test Homology 300’ 180’ 120’ 90’ 60’

Test 1 H0 3 2 4 2 2
H1 0 3 3 2 4

Test 2 H0 1 1 1 0 0
H1 0 2 0 0 0

See SI Appendix, Example 2 - Analyzing CMB Data for further details.

Adler et al. PNAS Early Edition | 5 of 6

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1706885114/-/DCSupplemental/pnas.1706885114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1706885114/-/DCSupplemental/pnas.1706885114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1706885114/-/DCSupplemental/pnas.1706885114.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1706885114/-/DCSupplemental/pnas.1706885114.sapp.pdf


here will open the door to developing a wide variety of (semipara-
metric) statistical methods for further applications of TDA.
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